首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数. (1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程; (2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数. (1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程; (2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
admin
2016-10-13
58
问题
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.
(1)将x=x(y)所满足的微分方程
=0变换为y=y(x)所满足的微分方程;
(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=
的解.
选项
答案
[*] 代入原方程得y"一y=sinx,特征方程为r
2
一1=0,特征根为r
1,2
=±1,因为i不是特征值,所以设特解为y
*
=acosx+bsinx,代入方程得a=0,b=一[*]sinx,于是方程的通解为y=C
1
e
x
+C
2
e
-x
一[*]sinx,由初始条件得C
1
=1,C
2
=一1,满足初始条,件的特解为y=e
-x
—e
-x
一[*]sinx.
解析
转载请注明原文地址:https://kaotiyun.com/show/I6u4777K
0
考研数学一
相关试题推荐
[*]
[*]
用集合运算律证明:
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
设f(x,y)=|x—y|≯(z,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的()
随机试题
穿过喙肱肌的神经是()
带传动的传动比估计式是什么?
A.浅部触诊法B.深部滑行触诊法C.深压触诊法D.冲击触诊法E.双手触诊法用于腹部内包块性状、大小、硬度的检查方法是()
出现以下症状不符合先天性心脏病的是
患者脑震荡入院,呈睡眠状态,可唤醒,醒后可回答问题,但反应迟钝。其意识状态为
农产品收购季节到来之际,某企业向银行申请贷款用于农产品收购,这是由()。
让受测者根据其所看到的图形编制一个故事属于()。
在分期付款买卖中,买受人未支付到期价款的金额达到全部价款的,出卖人可以要求买受人支付全部价款或者解除合同
已知向量α=(1,k,1)T是A=的伴随矩阵A*的一个特征向量,试求k的值及与α对应的特征值λ.
OnesillyquestionIsimplycannottolerateis"Howdoyoufeel?"Usuallythequestionisaskedofamaninaction—amanwalking
最新回复
(
0
)