首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得 =f(ξ)-ξf′(ξ).
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得 =f(ξ)-ξf′(ξ).
admin
2018-04-15
36
问题
设f(x)在[x
1
,x
2
]可导,0<x
1
<x
2
,证明:
ξ∈(x
1
,x
2
)使得
=f(ξ)-ξf′(ξ).
选项
答案
令F(x)=[*]则f(x)在[x
1
,x
2
]可导,又 F(x
1
)=[*][f(x
1
)-l,F(x
2
)=[*][f(x
2
)-l], F(x
1
)-F(x
2
)=[*][f(x
1
)x
2
-f(x
2
)x
1
-l(x
2
-x
1
)]=0. 因此,由罗尔定理,[*]ξ∈(x
1
,x
2
),使得 F′(ξ)=[*][ξf′(ξ)-f(ξ)+l]=0, 即 f(ξ)-ξf′(ξ)=l.
解析
令
,证明
ξ∈(x
1
,x
2
)使得l=f(ξ)-ξf′(ξ)
xf′(x)-f(x)+l在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点
在(x
1
,x
2
)存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Bir4777K
0
考研数学一
相关试题推荐
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内至少存在一点ξ,使.
求
对数螺线P=eθ在点(ρ,θ)=处的切线的直角坐标方程为_________.
证明拉格朗日中值定理。若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f(ξ)(b一a).
设f(x)是周期为4的可导奇函数,且f’(x)=2(x-1),x∈[0,2],则f(7)=___________.
求椭球面x2+2y2+z2=22上平行于平面x-y+2z=0的切平面方程。
设A,B,C,D是4个四阶矩阵,其中A≠O,|B|≠0,|C|≠0,D≠O,且满足ABCD=O。若r(A)+r(B)+r(C)+r(D)=r,则r的取值范围是()。
已知α1=[-1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是四阶方阵A的三个不同特征值的特征向量,则a的取值为()。
设随机变量X在[0,π]上服从均匀分布,求(1)Y=sinX的概率密度;(2)E(Y)和D(Y)。
已知(1,一1,0)T是二次型xTAx=αx12+x32一2x1x2+2x1x3+2bx2x3的矩阵A的特征向量,利用正交变换化二次型为标准形,并写出所用的正交变换和对应的正交矩阵。
随机试题
有价证券的价格是以一定的市场利率和预期收益为基础计算得出的()。
社会主义核心价值观与社会主义核心价值体系的关系表现在()
A、硫酸镁B、酚酞C、开塞露D、乳果糖E、聚乙二醇4000可用于治疗高血氨症的泻药
20×5年1月8日,债权人A以甲公司不能清偿到期债务且资不抵债为由向人民法院提出破产申请。1月21日,人民法院裁定受理破产申请,指定了管理人,并发出公告,要求甲公司的所有债权人在5月1日之前申报债权。在申报债权到期日前,债权人A申报到期债权1000万元,
在下列中,属于要约邀请的是()。
下列关于资本的表述,正确的命题是
Whendovesareabouttwoweeksold,theyarecoveredwithgreyfeathersandarereadytotrytheirwings.
Hehasmadeuphismind(teach)______inthecountryside.
A、Atthedoctor’soffice.B、Atthehospital.C、Atthedrugstore.D、Atthedepartmentstore.C
AmitaiEtzioniisnotsurprisedbythelatestheadingsaboutschemingcorporatecrooks(骗子).AsavisitingprofessorattheHarva
最新回复
(
0
)