首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
admin
2015-11-16
35
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( )。
选项
A、α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
-2α
3
,α
1
+α
2
-α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
-α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
D
解析
解 因为
(α
1
+α
2
)-(α
2
-α
3
)-(α
3
-α
4
)-(α
4
+α
1
)=0,
所以向量组(A)线性相关。
若令
β
1
=α
1
+α
2
, β
2
=α
1
-2α
3
, β
3
=α
1
+α
2
-α
3
, β
4
=5α
2
+α
3
。
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示。因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关。
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关,若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
。
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选。因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关。
转载请注明原文地址:https://kaotiyun.com/show/LFw4777K
0
考研数学一
相关试题推荐
设二次型f(χ1,χ2,χ3)=χ12+χ22+χ32+4χ1χ2+4χ1χ3+4χ2χ3,写出f的矩阵A,求出A的特征值,并指出曲面f(χ1,χ2,χ3)=1的名称.
求z=f(x,y)满足:dz=2xdx=4ydy且f(0,0)=5.求f(x,y);
用铁皮做一个容积为V的圆柱形罐头筒,试将它的全面积表示成底半径的函数,并确定此函数的定义域。
设A为n阶矩阵,且A2-2A-8E=O证明:r(4E-A)+r(2E+A)=n.
求条件概率密度fY|X(y|x);
设连续型随机变量X的概率密度为f(x)=,求(1)k的值;(2)X的分布函数F(x).
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即AB≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
已知极限.试确定常数n和c的值.
设A=有三个线性无关的特征向量,求x,y满足的条件.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值。其对应的特征向量为α3,下列向量中是A的特征向量的是().
随机试题
前列腺肉瘤很少见,起源于生肾索的中胚层组织,包括中肾管和中肾旁管的终末部分,是一种极度恶性的肿瘤。前列腺肉瘤的病理变化正确的是:
国防科学技术研究的重要项目、成果属于()。
患者,男性,40岁,连日来在高温下工作。今日下午感头痛头晕,继而体温升高达40℃,出现颜面潮红,皮肤干燥无汗,神志模糊,急诊入院。给患者采取的护理措施中,不妥的是
目前,我国零数委托适用于()。
优先股股息在当年未足额分派时,能在以后年度补发的优先股,称为()
背景说明:你是宏远公司行政秘书高叶,下面是行政经理苏明需要你完成的工作几项任务。
教师因对学生的期待和热望而表现出更多的注意、关心和亲近,从而对学生的学习成绩产生极大影响,这是()。
未成年犯禁闭期间,每天放风两次,每次不少于()。
纯收入
FiveGoldenRulesforGivingAcademicPresentationsAcademicpresentationsaredifferentfromtheclassroompresentationsthats
最新回复
(
0
)