首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
admin
2015-11-16
39
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( )。
选项
A、α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
-2α
3
,α
1
+α
2
-α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
-α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
D
解析
解 因为
(α
1
+α
2
)-(α
2
-α
3
)-(α
3
-α
4
)-(α
4
+α
1
)=0,
所以向量组(A)线性相关。
若令
β
1
=α
1
+α
2
, β
2
=α
1
-2α
3
, β
3
=α
1
+α
2
-α
3
, β
4
=5α
2
+α
3
。
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示。因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关。
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关,若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
。
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选。因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关。
转载请注明原文地址:https://kaotiyun.com/show/LFw4777K
0
考研数学一
相关试题推荐
证明:当x∈>cosx成立.
求
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ε,η∈(0,1),使得.
比较定积分的大小.
计算二重积分,其中积分区域D是由y轴与曲线所围成。[img][/img]
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设二元函数f(x,y)=|x-y|ψ(x,y),其中ψ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是ψ(0,0)=0.
求幂级数的收敛域.
随机试题
A、stomachB、headacheC、characterD、churchDch在church中的发音是[t∫],在其他三项中的发音是[k]。stomach胃;headache头疼;charater特征;church教堂。
脑血栓形成患者服用阿司匹林,目的是
乳剂制备时,先将乳化剂加入到水中再将油加入研磨成初乳,再加水稀释的方法为乳剂制备时,使植物油与含碱的水相发生皂化反应,生成新皂乳化剂随即进行乳化的方法为
善于调经止血、柔肝止痛的白芍炮制品是()。
工程项目的招标工作应在()阶段完成。
混凝土及抹灰面涂饰方法一般采用()等方法。
在应收管理模块初始化中,需要录入每笔()的往来业务单据。
(2015.河南)在对待师生关系方面,新课程中教师的教学行为强调()(常考)
阅读下面材料,选好角度,自拟题目,联系实际,写篇不少于600字的文章,除诗歌以外,文体不限。传说,北山愚公家门前有两座大山挡住了路,他下决心要把山平掉,河曲智叟笑他太傻,认为不可能。愚公回答:“我死了有儿子,儿子死了有孙子,子子孙孙是没有穷尽的。这两座山不
法律规定的公安机关在公益方面应当履行的责任义务包括救护、扶助、调解等方面。()
最新回复
(
0
)