首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
admin
2015-11-16
45
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( )。
选项
A、α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
-2α
3
,α
1
+α
2
-α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
-α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
D
解析
解 因为
(α
1
+α
2
)-(α
2
-α
3
)-(α
3
-α
4
)-(α
4
+α
1
)=0,
所以向量组(A)线性相关。
若令
β
1
=α
1
+α
2
, β
2
=α
1
-2α
3
, β
3
=α
1
+α
2
-α
3
, β
4
=5α
2
+α
3
。
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示。因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关。
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关,若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
。
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选。因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关。
转载请注明原文地址:https://kaotiyun.com/show/LFw4777K
0
考研数学一
相关试题推荐
设f(χ)在(-∞,+∞)上是导数连续的有界函数,|f(χ)-f′(χ)|≤1,证明:|f(χ)|≤1.
设f(x)为连续函数,证明:∫0πxf(sinx)dx=π/2∫0πf(sinx)dx=π∫0π/2f(sinx)dx;
[*]
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv。求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设矩阵A与B相似,且。求可逆矩阵P,使P—1AP=B。
设A=有三个线性无关的特征向量,求a及An.
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
试求曲线115的拐点,并证明:不论常数a取异于零的何数值,这些拐点总是在一条直线上.
已知y”+(x+3e2y)(y’)3=0(y’≠0),当把y视为自变量,而把x视为因变量时:在新形式下求方程的通解.
随机试题
利用岩石等介质的声学特性来研究钻井地质剖面,判断固井质量等问题的测井方法称为()测井。
负债
A、躯体运动核B、躯体感觉核C、内脏运动核D、内脏感觉核E、特殊内脏运动核三叉神经运动核属于
关于苯骈二氮杂卓类药物的鉴别反应的现象,以下说法不正确的是
下列说法不正确的有()。
资产负债表的格式有账户式和报告式两种,我国采用的是( )。
下列视同销售行为中,应按最高价格计征消费税的有()。
导游人员等级考核标准规定中级导游员的游客反映良好率不低于()。
旅行社组织中国内地居民出境旅游的,应当为旅游团队安排()全程陪同。
外资银行进人新兴市场国家,新兴市场国家银行业的各主体为了维持自身的生存,会尽可能争取较大的市场份额,充分拓展自身竞争优势,努力向客户提供质优价廉的金融产品和金融服务,这个过程必然带动银行业微观效率的提升。“这个过程”指的是:
最新回复
(
0
)