首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2020-03-16
89
问题
设函数y(x)(x≥0)二阶可导,且y
’
(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程。
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为 Y—y=y
’
(X—x), 它与x轴的交点为(x一[*],0)。 由于y
’
(x)>0,y(0)=1,因此y(x)>1(x>0)。于是 S
1
=[*]。 又可得 s
2
=∫
0
x
y(t)dt。 根据题设2S
1
一S
2
=1,有 [*]一∫
0
x
y(t)dt=1。 并且y
’
(0)=1,两边对x求导并化简得 yy
’’
=(y
’
)
2
, 这是可降阶的二阶常微分方程,令p(y)=y
’
,则上述方程可化 [*]=p
2
, 分离变量得 [*] 从而有y=C
2
e
C
1
x
。 根据y
’
(0)=1,y(0)=1,可得C
1
=1,C
2
=1。 故所求曲线的方程为y=e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Bo84777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2。求实数a的值;
求极限
设f(χ)=讨论函数f(χ)在χ=0处的可导性.
设Yx,Zx,Ux分别是下列差分方程的解yx+1+ayx=f1(x),yx+1+ayx=f2(x),yx+1+ayx=f3(x)求证:Zx=Yx+Zx+Ux是差分方程,yx+1+ayx=f1(x)+f2(x)+f3(x)的解.
求极限。
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.证明方程组AX=b有无穷多个解;
求极限:,a>0.
[2007年]设线性方程组①与方程(Ⅱ):x1+2x2+x3=a一1,②有公共解.求a的值与所有公共解.
设F(x)=,其中f’(x)在x=0处连续,且当x→0时,F’(x)~x2,则f’(0)=________.
随机试题
下列凭证属于外来原始凭证的有()。
侵蚀性葡萄胎与绒毛膜癌最常见的转移部位绒毛膜癌最常见的死亡原因是
_______常见于慢性肝炎、肝硬化。
保障受试者权益的主要措施是
水泥混凝土应有按规范规定组数的试块强度试验资料和汇总表,包括()。
担任施工项目负责人的注册建造师,在所负责的工程项目竣工验收或交接手续办结前,不得变更注册到另一企业,除非该项目()。
根据《银行业消费者权益保护工作指引》,银行业金融机构应当在()醒目位置公布投诉方式和投诉流程。()
审计报告日不应早于()的日期。
某课程组研究了激素类似物甲和激素类似物乙。请回答下列问题。问题:已知甲为生长素类似物,图7为甲在X、Y、Z三种浓度下对微型月季茎段侧芽生长的影响,则X、Y、Z三种浓度中属于高浓度的是________浓度,Y、z浓度大小关系能否确定?____
如何理解戏剧是动作的艺术?
最新回复
(
0
)