首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2020-03-16
65
问题
设函数y(x)(x≥0)二阶可导,且y
’
(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程。
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为 Y—y=y
’
(X—x), 它与x轴的交点为(x一[*],0)。 由于y
’
(x)>0,y(0)=1,因此y(x)>1(x>0)。于是 S
1
=[*]。 又可得 s
2
=∫
0
x
y(t)dt。 根据题设2S
1
一S
2
=1,有 [*]一∫
0
x
y(t)dt=1。 并且y
’
(0)=1,两边对x求导并化简得 yy
’’
=(y
’
)
2
, 这是可降阶的二阶常微分方程,令p(y)=y
’
,则上述方程可化 [*]=p
2
, 分离变量得 [*] 从而有y=C
2
e
C
1
x
。 根据y
’
(0)=1,y(0)=1,可得C
1
=1,C
2
=1。 故所求曲线的方程为y=e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Bo84777K
0
考研数学二
相关试题推荐
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
已知函数f(μ)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny—sinx),求。
求下列各微分方程的通解或在给定初始条件下的特解
利用已知展开式把下列函数展开为x的幂级数,并确定收敛域.
求极限
设在一段时间内进入某商店的顾客人数X服从参数为λ的泊松分布,每个顾客购买某件物品的概率为p(0<p<1),并且每个顾客购买该物品是相互独立的,以Y表示购买这种物品的顾客人数,求Y的概率分布.
设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率P{||>σ}的值随σ的增大而()
x=φ(y)是y=f(x)的反函数,f(x)可导,且f’(x)=,f(0)=3,求φ’’(3).
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设F(x)为f(x)的原函数,且当x≥0时,,又F(0)=1,F(x)﹥0,求f(x).
随机试题
A.动物性食品、凉拌菜、水产品B.淀粉类食品、剩米饭、奶制品C.海产品、受海产品污染的咸菜D.自制发酵食品、臭豆腐、面酱E.动物性食品、病死牲畜肉、蛋类
女,26岁。双侧乳房周期性胀痛3年,并可触及不规则包块,伴有触痛,月经过后疼痛缓解,包块略缩,诊断首先考虑
患者,女,45岁,因门静脉高压大出血入院。医嘱输血1000ml,静脉注射10%葡萄糖酸钙10ml,补钙的目的是
下列价值工程中降低价值的做法,正确的有()。
公民陈先生2011年6月个人收入如下:1.3年前购买的国债到期,取得利息所得1000元。2.一次性没计收入25000元。3.一次性获得特许权使用费收入15000元。4.保险赔款收入5000元。5.一次性稿酬
输出动物,出境前须经隔离检疫的,在口岸出入境检验检疫机构指定的隔离场所隔离检疫。()
学生林某发现自己的钱包不见了,怀疑是他的同桌拿了。于是班主任就把林某的同桌叫到办公室,对其进行搜身,班主任的做法侵犯了学生的()。
PQ4R学习法包括()
Thereisdistinctionbetweenreadingforinformationandreadingforunderstanding.【B1】______Thefirstsenseistheonein
NewYorkisthemostpopulous(人口多的)cityintheUnitedStates,inametropolitanareathatranksamongtheworld’smost-populous
最新回复
(
0
)