首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
admin
2020-03-16
59
问题
设函数y(x)(x≥0)二阶可导,且y
’
(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求曲线y=y(x)的方程。
选项
答案
设曲线y=y(x)上的点P(x,y)处的切线方程为 Y—y=y
’
(X—x), 它与x轴的交点为(x一[*],0)。 由于y
’
(x)>0,y(0)=1,因此y(x)>1(x>0)。于是 S
1
=[*]。 又可得 s
2
=∫
0
x
y(t)dt。 根据题设2S
1
一S
2
=1,有 [*]一∫
0
x
y(t)dt=1。 并且y
’
(0)=1,两边对x求导并化简得 yy
’’
=(y
’
)
2
, 这是可降阶的二阶常微分方程,令p(y)=y
’
,则上述方程可化 [*]=p
2
, 分离变量得 [*] 从而有y=C
2
e
C
1
x
。 根据y
’
(0)=1,y(0)=1,可得C
1
=1,C
2
=1。 故所求曲线的方程为y=e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Bo84777K
0
考研数学二
相关试题推荐
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=E.证明:B的列向量组线性无关.
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x3+2x1x3—2x2x3。求二次型f的矩阵的所有特征值;
设D={(x,y)|x2+y2≤,x≥0,y≥0,[1+x2+y2]表示不超过1+x2+y2的最大整数。计算二重积分xy[1+x2+y2]dxdy。[img][/img]
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(1)=0.证明:至少存在一点ξ∈(0,1),使(1+ξ2)(aretanξ)f’(ξ)=一1.
已知曲线y=f(x)在任一点x处的切线斜率为k(k为常数),求曲线方程.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.证明方程组AX=b有无穷多个解;
设3阶方阵A的特征值为2,-1,0,对应的特征向量分别为α1,α2,α3,若B=A3-2A2+4E,试求B-1的特征值与特征向量.
[2014年]设平面区域D={(x,y)∣1≤x2+y2≤4,x≥0,y≥0),计算dxdy.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
随机试题
群体压力来自于()
Christmaswascoming.Wewerehaving【C1】______weatherinLondonthatRobert【C2】______ChristmasweekinanItalianseasidewehad
体质因素与精神状态主要能影响人体的( )。
下列对港澳地区的铁路运输的表述错误的有()。
改革开放三十多年以来,广东经济发展连上新台阶,综合实力不断实现大跨越。1979—2012年,世界经济年均增长速度为2.8%,中国增速为9.8%,广东增速则达13.3%。持续较快的经济增速,推动广东经济总量不断跃上新台阶。自1989年开始,广东GDP总量(国
在后果预测中,下列()方法属于德尔菲法。
Ifyouwant______,youshouldspeakslowlyandclearlytothelisteners.
Inrecentyears,moreandmoreforeignersareinvolvedintheteachingprogramsoftheUnitedStates.Boththeadvantagesandth
Mostmeetingshaveanagenda.Foraformalmeeting,thisdocumentmaybehandedoutinadvancetoallparticipants.Foraninfor
NationalGeographicLiftsVeilonAirForceOneUntilFranklinD.Roosevelt,noU.S.Presidenttraveledbyairwhileinoffic
最新回复
(
0
)