首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2018-11-21
66
问题
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]sF(s)|
0
1
一∫
0
1
sdF(s)=F(1)一∫
0
1
sf(s)ds=0一0=0, 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(C)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知, [*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Bpg4777K
0
考研数学一
相关试题推荐
函数f(x,y)=x2y3在点P(2,1)处沿方向l=i+j的方向导数为().
设S为椭球+z2=1的上半部分,已知S的面积为A,则第一类曲面积分(4x2+9y2+36z2+xyz)dS=_____________.
二维随机变t(X,Y)服从二维正态分布,且X,Y不相关,fX(x),fY(y)分别为X,Y的边缘密度,则在Y=y的条件下,X的条件概率密度函数fX|Y(x|y)为().
微分方程y″一y′=ex+1的一个特解具有的形式为().
在区间(0,1)中随机地取出两个数,则“两数之积小于”的概率为_________。
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
设f(x)在[a,b]上有二阶连续导数,证明
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解。
已知AB=A-B,证明:A,B满足乘法交换律。
随机试题
A.急性胃炎B.慢性胰腺炎C.自身免疫性胃炎D.十二指肠溃疡E.胃癌大便隐血持续阳性多见于
牙周炎患者最多的主诉症状是
我国改革开放后经济波动状态的特征可以概括为( )。
根据《商业银行合规风险管理指引》规定,下列各项不属于商业银行经营所需遵循的法律法规与规范的是()。
根据票据法律制度的规定,下列有关汇票的表述中,正确的是()。
伴随着战争合法性门槛与战争预期代价的上升,国家间战争有所减少,但是战争_______作为军事手段可能越来越受到重视。填入画横线部分最恰当的一项是:
()是指照明停止或由亮处转入暗处时视觉感受性提高的时间过程,需要时间较长。
依据一定的客观标准,对教学活动及其结果进行测量、分析和评定的过程就是()。
中国历史上第一部具有资产阶级共和国宪法性质的法典是()
关于共享式以太网的描述中,错误的是()。
最新回复
(
0
)