首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2018-11-21
24
问题
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]sF(s)|
0
1
一∫
0
1
sdF(s)=F(1)一∫
0
1
sf(s)ds=0一0=0, 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(C)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知, [*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Bpg4777K
0
考研数学一
相关试题推荐
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
求
设=().
设f(x)在[a,+∞)上可导,且当x>a时,f′(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a一]上有且仅有一个实根.
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
求不定积分
函数u=在点A(1,0,1)处沿点A指向点B(3,-2,2)方向的方向导数为_______。
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导,且满足=一z,若f(x,y)在D内没有零点,则f(x,y)在D上().
随机试题
不属于提前退休的条件是()
Forty-fivetouristsvisitedMountEmei_____thedriver.
28岁不孕妇女,痛经3年且进行性加重。查子宫后壁有2个触痛性硬韧结节,右侧附件区扪及直径约5cm、活动差的囊性肿物,压痛不明显。临床诊断子宫内膜异位症,经腹腔镜检查证实,该患者应实施的手术术式为
刺蒺藜和菊花的共同作用是
下列属于信托公司从事的主流信托业务的有()。
公平正义理念对公安工作的具体要求包括()。
将晒干后的残茶叶燃烧,可_________蚊虫。填入横线部分最恰当的一项是()。
下列哪一项不属于董仲舒提出的文教政策?()
晴雯
设A为正交阵,且|A|=一1,证明λ=一1是A的特征值.
最新回复
(
0
)