首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
admin
2018-11-21
26
问题
设f(x)在[0,1]上连续,且满足J f(x)dx=0,fxf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
选项
答案
令F(x)=∫
0
x
f(t)dt,G(x)=∫
0
x
F(s)ds,显然G(x)在[0,1]可导,G(0)=0,又 G(1)=∫
0
1
F(s)ds[*]sF(s)|
0
1
一∫
0
1
sdF(s)=F(1)一∫
0
1
sf(s)ds=0一0=0, 对G(x)在[0,1]上用罗尔定理知,[*]c∈(0,1)使得G’(c)=F(c)=0. 现由F(x)在[0,1]可导,F(0)=F(C)=F(1)=0,分别在[0,c],[c,1]对F(x)用罗尔定理知, [*]ξ
1
∈(0,c),ξ
2
∈(c,1),使得F’(ξ
1
)=f(ξ
1
)=0,F’(ξ
2
)=f(ξ
2
)=0,即f(x)在(0,1)内至少存在两个零点.
解析
为证f(x)在(0,1)内存在两个零点,只需证f(x)的原函数F(x)=∫
0
x
f(t)dt在[0,1]区间上有三点的函数值相等.由于F(0)=0,F(1)=0,故只需再考察F(x)的原函数G(x)=∫
0
x
F(s)ds,证明G(x)的导数在(0,1)内存在零点.
转载请注明原文地址:https://kaotiyun.com/show/Bpg4777K
0
考研数学一
相关试题推荐
求作一个齐次线性方程使得它的解空间由下面四个向量所生成α1=[一1,一1,1,2,0]T,α2=[1/2,一1/2,1/2,6,4]T,α3=[1/4,0,0,5/4,1]T,α4=[一1,一2,2,9,4]T.
设f(x)=又设f(x)展开的正弦级数为S(x)=则S(3)=().
设A是三阶矩阵,α1=[1,2,-2]T,α2=[2,1,-1]T,α3=[1,1,t]T是线性非齐次方程组AX=b的解向量,其中b=[1,3,一2]T,则().
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是。设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);(Ⅲ)
半圆形闸门半径为R米,将其垂直放入水中,且直径与水面齐平,设水的比重ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P=()
设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:(Ⅰ)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f’’(η)+f’(η)=1。
证明:∫0sinnxcosnxdx=2-n∫0sinnxdx.
设n为正整数,f(x)=xn+x一1.证明:对于给定的n,f(x)在(0,+∞)内存在唯一的零点xn;
随机试题
女,72岁。突然昏仆,伴右半身不遂1小时入院。患者因情志刺激突然昏仆,不省人事,右半身不遂,血压210/120mmHg,体温38.2℃。患者不省人事,牙关紧闭,口噤不开,喉间痰鸣,气粗口臭,面赤身热,烦躁不安,舌红苔黄腻,脉弦滑数。头颅CT示:脑梗死。
复发性阿弗他溃疡较少发生的部位是
若在标准Zn-Ag原电池的Ag+/Ag半电池中,加入NaCl,则其电动势会()。
工程建设定额是由多种定额结合而成的有机整体、它的结构复杂、层次鲜明、目标明确这体现了工程建设定额的()特点。
背景资料某新建项目,其中一栋4层框架结构原有建筑(外围护墙充墙已砌筑)需先拆除,然后在此基础上重建24层某建筑。总承包单位将拆除施工分包给了某公司,该公司采用人工拆除,施工过程如下:(1)先沿短向将梁板结构混凝土每隔两个柱距作为一个单元,并从中切开;(2
根据《非上市公众公司监督管理办法》,在公众公司收购中,收购人持有的被收购公司的股份,在收购完成后()个月内不得转让。[2017年9月真题]
当价格供给弹性为1时,总供给量和价格同速变化。()
学习之间发生迁移时,学习者原有经验的组成要素没有发生变化,即抽象的结构没有变化,只是将一种学习中习得经验的组成要素重新组合并移用于另一种学习之中。这种迁移属于()。
Whatdoesthemanproposetodofirst?
A、Tennis.B、Hockey.C、Gymnastics.D、Bridge.D此题为明示信息,看到选项就可以预测,问的是一种游戏或者运动。女士说自己喜欢打桥牌(bridge),故选D。做题时注意排除hockey引起的干扰。
最新回复
(
0
)