首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解. (1)求a的值; (2)求齐次方程组(i)的通解; (3)求齐次方程(ii)的通解.
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解. (1)求a的值; (2)求齐次方程组(i)的通解; (3)求齐次方程(ii)的通解.
admin
2016-11-03
47
问题
已知四元齐次线性方程组(i)
的解全是四元方程(ii)x
1
+x
2
+x
3
=0的解.
(1)求a的值;
(2)求齐次方程组(i)的通解;
(3)求齐次方程(ii)的通解.
选项
答案
(1)因方程组(i)的解全是方程(ii)的解,故方程组(i)与方程组(iii) [*] 同解,且其系数矩阵 [*] 有相同的秩,因而a≠0.这是因为:如a=0,则r(A)=1,r(B)=2. 当a≠0时,易求得r(A)=3.这是因为A中有子行列式 [*] 对B进行初等行变换,得到 [*] 故当2a-1=即a=1/2时,r(B)=3.此时方程组(i)与方程组(iii)同解. (2)由A→[*]及基础解系的简便求法,即得方程组(i)的基础解系为 α=[一1/2,一1/2,1,1]
T
, 其通解为kα,k为任意实数. (3)注意到方程(ii)为四元方程,即x
1
+x
2
+x
3
+0x
4
=0.由 [*] 即可写出其基础解系为 β
1
=[一1,1,0,0]
T
, β
2
=[一1,0,1,0]
T
, β
3
=[0,0,0,1]
T
, 其通解为 k
1
β
1
+k
2
β
2
+k
3
β
3
, 其中k
1
,k
2
,k
3
为任意常数.
解析
由题设可作出与方程组(i)同解的方程组,即将方程组(i)与方程(ii)联立得方程组(iii).再利用同解的必要条件:方程组(i)与方程组(iii)的系数矩阵的秩必相等.由此确定a,再用基础解系的简便求法,即可分别求得方程组(i)与方程(ii)的基础解系,写出其通解.
转载请注明原文地址:https://kaotiyun.com/show/kHu4777K
0
考研数学一
相关试题推荐
[*]
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
微分方程y"-2y’+2y=ex的通解为________.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则丨4A-1-E丨=_________.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
(2000年)曲面x2+2y2+3z2=21在点(1,一2,2)的法线方程为________。
随机试题
要确定审美教育的内涵必须遵循的原则有()
脱落细胞不宜采用的染色法为
男性,1岁,因发育落后来诊。查体:皮肤细嫩,眼距宽,鼻梁扁平,舌常伸出口外,小拇指向内侧弯曲,通贯掌。为确诊需首选的检查是
城市房屋拆迁估价中,房地产估价师对被拆迁房屋面积的界定可来自于()。[2007年考题]
根据《民法总则》的相关法律规定,下列哪些属于法定减轻或免除民事责任的情形?
踝关节韧带损伤最多发生在()。
四月的风拂过,山峦沉稳,微笑地面对着我。在他怀里,随风翻飞的是____________的草叶,一色的枝柯。我逐渐向山峦走近,只希望能够知道他此刻的心情。有模糊的低语穿过林间,在四月的末梢,生命正____________着一种芳醇的变化,一种未能完全预知的骚
OneDevonshireGardens7July,20_Faxto:P.PetermanFaxnumber:0101-202-555-1218DearMr.Peterman:T
Theeconomystoppedshrinkingayearago,butAmerica’sunemploymentproblemisasbigasever.Theofficialjoblessratewas9.
MostofRussia’ssuper-richspendtheirsummerholidaysonyachtsinthesunnyMediterranean.BorisFyodorovpreferredvisiting
最新回复
(
0
)