首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
admin
2017-01-14
37
问题
已知A、B为三阶非零矩阵,且A=
。β
1
=(0,1,-1)
T
,β
2
=(a,2,1)
T
,β
3
=(6,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
(Ⅰ)a,b的值;
(Ⅱ)求Bx=0的通解。
选项
答案
(Ⅰ)由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
, 必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 [*] 所以b=5,a=3b=15。 (Ⅱ)因为B≠O,所以r(B)≥1,则3-r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3-r(B)=2,所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/jxu4777K
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
用区间表示下列点集,并在数轴上表示出来:(1)I1={x||x+3|<2}(2)I2={x|1<|x-2|<3}(3)I3={x||x-2|<|x+3|}
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
试确定P的取值范围,使得y=x3-3x+p与x轴(1)有一个交点;(2)有两个交点;(3)有三个交点.
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设A、B、C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,则P(AB|C ̄)=________.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|X ̄-μ|≥2}≤_________.
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
随机试题
“王西厢”是指【】
十进制153转换成二进制数应为()。
属于监理单位用表的是( )。
机构投资人认购大额存单起点金额不低于()万元。
固定资产重置的原因主要是设备自然老化和技术更新。()
对有证据证明有犯罪事实,可能判处( )刑罚的犯罪嫌疑人、被告人,采取取保候审、监视居住等方法,尚不足以防止发生社会危险性,而有逮捕必要的,应立即依法逮捕。
材料1:GDP(国内生产总值)被称为“20世纪最伟大发明之一”,目前世界上还没有更科学的经济总量指标采取代它。但是GDP又远非“完美”——GDP,不能直接反映老百姓人均实际收入;GDP,不能有效显现环保的品质指标;GDP,不能理想制约眼前利益与终
关于公文写作一份完整的计划应包括的内容有()。
下列现象中,违反民法平等原则的是()。
Speedingoffinastolencar,thethiefthinkshehasgotagreatcatch.Butheisinforanunwelcomesurprise.Thecarisfitt
最新回复
(
0
)