首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
admin
2017-01-14
55
问题
已知A、B为三阶非零矩阵,且A=
。β
1
=(0,1,-1)
T
,β
2
=(a,2,1)
T
,β
3
=(6,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
(Ⅰ)a,b的值;
(Ⅱ)求Bx=0的通解。
选项
答案
(Ⅰ)由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
, 必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 [*] 所以b=5,a=3b=15。 (Ⅱ)因为B≠O,所以r(B)≥1,则3-r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3-r(B)=2,所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/jxu4777K
0
考研数学一
相关试题推荐
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
A是n阶矩阵,且A3=0,则().
行列式为f(x),则方程f(x)=0的根的个数为
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
因为方程组(I)(Ⅱ)有公共解,[*]
设A,B皆为n阶矩阵,则下列结论正确的是().
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x0,y0)处相切是指它们在(x0,y0处有共同切线),求a,b的值.
随机试题
肛裂青壮年好发于肛裂男性好发于
论我国人民代表大会制度的主要内容与进一步健全、完善人民代表大会制度的目标、途径。
下列选项中,通过会计来核算的有()。
政府建设主管部门对质量监督人员每()进行一次岗位考核。
Excel工作窗口主要包括()等屏幕元素。
与个人独资企业相比,公司制企业的特点有()。(2020年卷Ⅱ)
外延型行政改革涉及行政机构的()。
五十多年后回顾这段历史,杜老依然________,然而他也没有________土改实施过程中的缺陷,例如消灭富农和侵犯中农,以及没有严格依法保护劳动者财产利益。填入划横线部分最恰当的一项是()。
Hergreatnessis______herbroadgeneraleducationaswellasherprofoundmedicalknowledgeandinsight.
Whatdoesthewomanimplyabouttheman?
最新回复
(
0
)