首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
admin
2017-01-14
65
问题
已知A、B为三阶非零矩阵,且A=
。β
1
=(0,1,-1)
T
,β
2
=(a,2,1)
T
,β
3
=(6,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
(Ⅰ)a,b的值;
(Ⅱ)求Bx=0的通解。
选项
答案
(Ⅰ)由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
, 必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 [*] 所以b=5,a=3b=15。 (Ⅱ)因为B≠O,所以r(B)≥1,则3-r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3-r(B)=2,所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/jxu4777K
0
考研数学一
相关试题推荐
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
用区间表示下列点集,并在数轴上表示出来:(1)I1={x||x+3|<2}(2)I2={x|1<|x-2|<3}(3)I3={x||x-2|<|x+3|}
求下列极限:
微分方程xy’+y=0满足条件y(1)=1的解是y=________.
行列式为f(x),则方程f(x)=0的根的个数为
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
设测量的随机误差X~N(0,102),试求100次独立重复测量,至少有3次测量误差的绝对值大于19.6的概率α,并用泊松分布求α的近似值.
(2012年试题,三)已知计算行列式|A|;
随机试题
TheBeijingPeaceInternationalHotelWeoffertravelersawealthoffeaturesthatpromptareturnvisit.EASYACCESSIBI
恶露分为________、________、________三类。
A、Bitot斑B、Kayser-Fleischer环C、Fleischer环D、Vogt线纹E、Stocker线角膜后强性层蓝绿色环()
为确诊应作的检查是患儿确诊后治疗应选用
为研究45岁以上男性体重指数(BMI)≥25者糖尿病患病率是否高于体重指数
利用可观察到的借款人特征变量计算出一个数值(得分)来代表债务人的信用风险,并将借款人归类于不同的风险等级的模型是()。
设A,B是任意两个随机事件,则
一个基金公司为其客户提供几种不同的基金:一个货币市场基金,三种债券基金(短期债券、中期债券和长期债券),两种股票基金(适度风险股票和高风险股票)以及一个平衡基金.在所有只持有一种基金的客户中,持有各基金的客户比例分别为货币市场20%
以使用逻辑元器件为标志,大型机经历了4个阶段,其中第3代是()。
Thebookfromwhich"allmodemAmericanliteraturecomes"refersto______.
最新回复
(
0
)