首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. 证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;
admin
2018-05-21
73
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
选项
答案
因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
2
. 令γ=k
1
α
1
+k
2
α
2
=-l
1
β
1
-l
2
β
2
,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都不全为零,所以γ≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bpr4777K
0
考研数学一
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
A、P1P3AB、P2P3AC、AP3P2D、AP1P3B矩阵A作两次行变换可得到矩阵B,而AP3P2和AP1P3是对矩阵A作列变换,故应排除C,D。把矩阵A的第1行的2倍加至第3行,再将1,2两行互换得到矩阵B;或者把矩阵A的1,2两行互换后,再
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设D={(x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明
已知a,b为非零向量,且a⊥b,则必有()
具有特解y1=e—x,y2=2xe—x,y3=3ex的三阶常系数齐次线性微分方程是()
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B;(Ⅱ)求矩阵A的特征值;(Ⅲ)求可逆矩阵P,使
随机试题
铝及铝合金焊接时,在焊前进行预热是为了防止热裂纹。
张女士,经产妇,26岁。妊娠10个月,急诊检查宫口已开2cm,住院处护士首先应
窦性心动过速不会发生于下列哪种情况
高桩码头工程施工组织设计编制中,“工程项目主要情况”包括工程名称、建设地点、建设规模、总工期、()、主要工程量、分包队伍选择、施工流程和工艺特点、新技术、新材料应用等。
机械零件材料内部任一点因外力作用引起的形状和尺寸的相对改变称为()。
股东大会依照章程规定或依照股东大会决议,实行累积投票制,适用于()。
下列各项预算中,属于财务预算内容的有()。
下列各组词语中,加下划线字的注音全都正确的一组是()
假设一厂家生产的每台仪器以概率0.7可直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可出厂,概率0.2不合格而不能出厂,现该厂生产n(n≥2)台仪器(设仪器生产过程相互独立).求(1)能出厂的仪器数X的分布列;(2)n台仪器能全部出厂的概率;(3
打开工作簿文件Excel.xlsx.选取“职工号”列(A2:A10)和“岗位津贴”列(C2:C10)数据区域的内容建立“簇状条形图”,图表标题为“岗位津贴统计图”,图例在底部,将图插入表A11:G27单元格区域。
最新回复
(
0
)