首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P,使
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P,使
admin
2016-01-22
32
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
(Ⅰ)(Aα
1
,Aα
2
,Aα
3
)=A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 对照A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B,可知 [*] (Ⅱ)因为α
1
解析
转载请注明原文地址:https://kaotiyun.com/show/JDw4777K
0
考研数学一
相关试题推荐
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
参数a取何值时,线性方程组有无数个解?求其通解.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点。写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式。
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于()。
设f(x)∈C[0,1],f(x)>0,证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率。
某班数学考试成绩呈正态分布N(70,100),老师将最高成绩的5%定为优秀,那么成绩为优秀的最少成绩是多少?
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设随机变量X和Y都服从标准正态分布,则
随机试题
旋塞阀开关不灵活的原因是()。
关于审美形态的界定,历史上的说法多种多样,主要包括()
符合多毛细胞白血病的检验结果是
有关膜剂的表述,不正确的是
我国注册咨询工程师(投资)的执业范围包括:()。
下列冷却水系统供水方式中,()一般适用于水源水量充足的地方。
职业健康安全管理体系标准由5大要素构成,其循环的顺序为()。
A、B、C三家施工单位签订了共同投标协议组成联合体,以一个投标人的身份投标,该联合体接到中标通知书后经认真测算发现该项目投标报价过低,遂决定放弃该项目。全占果导致招标人重新招标、工程竣工日期后延。下列关于联合体承担赔偿责任的叙述中,正确的有()。
《春秋》是我国现存最早的编年体史书。()
Moneyseemscutanddried—youcanrepresentitwithnumbersand【C1】______points,andifyoustickyourhandinyourpocketyou
最新回复
(
0
)