首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续函数. (1)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x). (2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
设f(x)是连续函数. (1)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x). (2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
admin
2016-01-15
117
问题
设f(x)是连续函数.
(1)利用定义证明函数F(x)=∫
0
x
f(t)dt可导,且F’(x)=f(x).
(2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫
0
x
f(t)dt一x∫
0
2
f(t)dt也是以2为周期的周期函数.
选项
答案
(1)证明:由导数定义可得 [*] (2)根据题设,有 G’(x+2)=[2∫
0
x+2
f(t)dt一(x+2)∫
0
2
f(t)dt]’=2f(x+2)一∫
0
2
f(t)dt, G’(x)=[2∫
0
x
f(t)dt一x∫
0
2
f(t)dt]’=2f(x)一∫
0
2
f(t)dt 当f(x)是以2为周期的周期函数时,f(x+2)=f(x). 从而G’(x+2)=G’(x).因而 G(x+2)一G(x)=C. 取x=0得,C=G(0+2)一G(0)=0,故 G(x+2)一G(x)=0. 即G(x)=2∫
0
x
f(t)dt一x∫
0
2
f(t)dt是以2为周期的周期函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/hXw4777K
0
考研数学一
相关试题推荐
当χ>0时,证明:
[*]
一长方形的两边长分别以x与y表示,若x边以0.O1m/s的速度减少,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化速度及对角线长度的变化速度.
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
设函数f(x)在区间[-1,1]上有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在(一1,1)内至少存在一点ξ,使得f"’(ξ)=3.
交换积分次序并计算.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它存进人大气层开始燃烧的前3s内,减少了体积的,问
过第一象限中椭圆上的点(ε,η)作该椭圆的切线,使该切线与两坐标轴的正向围成的三角形的面积为最小,求点(ε,η)的坐标及该三角形的面积.
设Σ是半球面x2+y2+z2=1(x≥0,y≥0)的外侧,则曲线积分xyzdxdy=().
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)