首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成. (Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积; (Ⅱ)求
设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成. (Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积; (Ⅱ)求
admin
2021-03-16
58
问题
设曲线段
(0≤t≤2π),平面区域D由曲线段L与x轴所围成.
(Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积;
(Ⅱ)求
选项
答案
(Ⅰ)V
x
=π∫
0
4π
y
2
dx=π∫
0
2π
2
2
2(1-cost)
2
·2(1-cost)dt =8π∫
0
2π
(1-cost)
3
dt=8π∫
0
2π
(2sin
2
[*])
3
dt=128π∫
0
2π
sin
6
[*] =128π∫
0
π
sin
6
tdt=256π[*]sin
6
tdt=256π[*]=40π
2
取[x,x+dx][*][0,4π],dV
y
=2πx·y·dx,则 V
y
=2π∫
0
4π
xydx=2π∫
0
2π
2(t-sint)·2
2
(1-cost)
2
dt[*]2π∫
-π
π
2(u+π+sinu)·2
2
(1+cosu)
2
du =16π
2
∫
-π
π
(1+cosu)
2
du=32π
2
∫
0
π
(1+cosu)
2
du =32π
2
∫
0
π
(2cos
2
[*])
2
du=256π
2
[*]cos
4
udu =256π
2
·[*]=48π
3
. (Ⅱ)设L:y=y(x)(0≤x≤4π),则 [*]=∫
0
4π
dx[*](x+y)dy=∫
0
4π
(xy+[*])dx =∫
0
2π
[2(t-sint)·2(1-cost)+2(1-cost)
2
]·2(1-cost)dt =8∫
0
2π
(t-sint)(1-cost)
2
dt+4∫
0
2π
(1-cost)
3
dt, 由∫
0
2π
(t-sint)(1-cost)
2
dt[*]∫
-π
π
(u+π+sinu)(1+cosu)
2
du =2π∫
0
π
(1+cosu)
2
du=2π∫
0
π
(2 cos
2
[*])
2
du =16π[*]cos
4
udu=16π[*] =3π
2
, ∫
0
2π
(1-cost)
3
dt=∫
0
2π
(2 sin
2
[*])
3
dt=16∫
0
π
sin
6
tdt [*] 故[*]dxdy=8·3π
2
+4·5π=24π
2
+20π.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bsy4777K
0
考研数学二
相关试题推荐
曲线的过原点的切线为______。
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设则(A-1)*=_________.
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
设f(x)二阶连续可导,且f(0)=1,f(2)=3,f’(2)=5,则∫01xf"(2x)dx=_______.
设f(x,y,z)=exyz2其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=________
已知方程组总有解,则λ应满足_______.
设z(χ,y)=χ3+y3-3χy(Ⅰ)-∞<χ<+∞,-∞<y<+∞,求z(χ,y)的驻点与极值点.(Ⅱ)D={(χ,y)|0≤χ≤2,-2≤y≤2},求证:D内的唯一极值点不是z(χ,y)在D上的最值点.
已知=2x+y+1,=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。[img][/img]
在椭圆内嵌入有最大面积的四边平行于椭圆轴的矩形,求该最大面积.
随机试题
A.肝脏B.肾脏C.肺D.胆E.心脏进入肠肝循环的药物的来源部位是
A.环磷酰胺B.甲氨蝶呤C.长春新碱D.多柔比星(阿霉素)E.左旋门冬酰胺酶常引起周围神经炎的化疗药是
正常新生儿出生24h护理不妥的是
下列有关国际贸易支付结算的表述正确的有:()
某公司2011年12月31日部分账户的余额资料如下表。根据上表资料填列的资产负债表中,“存货”项目的期末余额为()元。
刑事诉讼中,代理与辩护存在许多差异。下列关于刑事诉讼代理与辩护的说法中,正确的是()。
根据就业促进法,我国促进就业的方针是()。
投资函数是指______与______之间的关系。
从一个地区抽取的具有一定代表性的一部分个体,也称为()。
Toour______,Geoffrey’sillnessprovednottobeasseriousaswehadfeared.
最新回复
(
0
)