首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成. (Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积; (Ⅱ)求
设曲线段(0≤t≤2π),平面区域D由曲线段L与x轴所围成. (Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积; (Ⅱ)求
admin
2021-03-16
89
问题
设曲线段
(0≤t≤2π),平面区域D由曲线段L与x轴所围成.
(Ⅰ)求区域D分别绕x轴和y轴所得旋转体的体积;
(Ⅱ)求
选项
答案
(Ⅰ)V
x
=π∫
0
4π
y
2
dx=π∫
0
2π
2
2
2(1-cost)
2
·2(1-cost)dt =8π∫
0
2π
(1-cost)
3
dt=8π∫
0
2π
(2sin
2
[*])
3
dt=128π∫
0
2π
sin
6
[*] =128π∫
0
π
sin
6
tdt=256π[*]sin
6
tdt=256π[*]=40π
2
取[x,x+dx][*][0,4π],dV
y
=2πx·y·dx,则 V
y
=2π∫
0
4π
xydx=2π∫
0
2π
2(t-sint)·2
2
(1-cost)
2
dt[*]2π∫
-π
π
2(u+π+sinu)·2
2
(1+cosu)
2
du =16π
2
∫
-π
π
(1+cosu)
2
du=32π
2
∫
0
π
(1+cosu)
2
du =32π
2
∫
0
π
(2cos
2
[*])
2
du=256π
2
[*]cos
4
udu =256π
2
·[*]=48π
3
. (Ⅱ)设L:y=y(x)(0≤x≤4π),则 [*]=∫
0
4π
dx[*](x+y)dy=∫
0
4π
(xy+[*])dx =∫
0
2π
[2(t-sint)·2(1-cost)+2(1-cost)
2
]·2(1-cost)dt =8∫
0
2π
(t-sint)(1-cost)
2
dt+4∫
0
2π
(1-cost)
3
dt, 由∫
0
2π
(t-sint)(1-cost)
2
dt[*]∫
-π
π
(u+π+sinu)(1+cosu)
2
du =2π∫
0
π
(1+cosu)
2
du=2π∫
0
π
(2 cos
2
[*])
2
du =16π[*]cos
4
udu=16π[*] =3π
2
, ∫
0
2π
(1-cost)
3
dt=∫
0
2π
(2 sin
2
[*])
3
dt=16∫
0
π
sin
6
tdt [*] 故[*]dxdy=8·3π
2
+4·5π=24π
2
+20π.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bsy4777K
0
考研数学二
相关试题推荐
(14)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
微分方程(2χ+3)y〞=4y′的通解为_______.
=___________.
已知y=ln(x+),则y’’=__________。
设y=cosx2sin2,则y’=______.
设3阶矩阵3维列向量已知Aα和α线性相关,则a=__________.
设f(x,y)连续,且其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
求数列极限
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
随机试题
肝之变动为肾之变动为
某原子序数为15的元素,其基态原子的核外电子分布中,未成对电子数是()。
根据个人基本养老保险扣缴的现行政策,个人基本养老保险扣缴基数按照上年当地在岗职工平均工资()为依据。
按照土地增值税有关规定,纳税人提供扣除项目金额不实的,在计算土地增值税时,应按照()。
基线测量方法可以应用于对()的工作介入评估。
键盘、鼠标都属于计算机的()。
被称为“德国师范教育之父”的教育家是()。
采用权益法核算长期股权投资时,对于被投资企业因可供出售金融资产公允价值变动影响资本公积增加,期末因该事项投资企业应按所拥有的表决权资本的比例计算应享有的份额,将其计入()。
警察甲因为公民吴某举报自己受贿而怀恨在心,遂用他人手机向某军官发了一条短信,捏造吴某与其妻同居的事实,该军官信任自己妻子未予理睬,甲的行为构成()(2012年一专一第9题)
Itlookedjustlikeanotheraircraftfromtheoutside.Thepilottoldhisyoungpassengersthatitwasbuiltin1964.Butappear
最新回复
(
0
)