首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列结论正确的是 ( )
下列结论正确的是 ( )
admin
2019-08-12
45
问题
下列结论正确的是 ( )
选项
A、z=f(x,y)在点(x
0
,y
0
)某邻域内两个偏导数存在,则z=f(x,y)在点(x
0
,y
0
)处连续
B、z=f(x,y)在点(x
0
,y
0
)某邻域内连续,则z=f(x,y)在点(x
0
,y
0
)处两个偏导数存在
C、z=f(x,y)在点(x
0
,y
0
)某邻域内两个偏导数存在且有界,则z=f(x,y)在点(x
0
,y
0
)处连续
D、z=f(x,y)在点(x
0
,y
0
)某邻域内连续,则z=f(x,y)在点(x
0
,y
0
)该邻域内两个偏导数有界
答案
C
解析
二元函数的连续性与偏导数之间没有必然的联系.设在(x
0
,y
0
)某邻域U内,对于任意(x,y)∈U,有|f’
x
(x,y)|≤M,|f’
y
(x,y)|≤M(M为正常数).
由微分中值定理,有
|f(x,y)一f(x
0
,y
0
)|≤|f(x,y)一f(x,y
0
)|+|f(x,y
0
)一f(x
0
,y
0
)|
=|f’
y
(x,y
0
+θ
1
Ay)·△y|+|f’
x
(x
0
+θ
2
△x,y
0
)·△x|
≤M(|△x|+|△y|),
这里△x=x—x
0
,△y=y—y
0
,0<θ
1
,θ
2
<1.
当
时,有△x→0,△y→0,必有
|f(x,y)一f(x
0
,y
0
)|≤M(|△x|+|△y|)→0,
故f(x,y)在点(x
0
,y
0
)处连续.
转载请注明原文地址:https://kaotiyun.com/show/EuN4777K
0
考研数学二
相关试题推荐
(18年)已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.(1)求f(x);(2)若f(x)在区间[0,1]上的平均值为1.求a的值.
(09年)设非负函数y=y(x)(x≥0)满足微分方程xy”一y’+2=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2.求D绕y轴旋转所得旋转体的体积.
(12年)计算二重积分,其中区域D由曲线r=1+cosθ(0≤θ≤π)与极轴围成.
设函数f(x)在[1,+∞]上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为V(t)=[t2f(t)一f(1)]试求y=f(x)所应满足的微分方程.并求该微分方程满足条件的解.
(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=______.
问a、b为何值时,线性方程组无解、有唯一解、有无穷多解?并求有无穷多解时的通解.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中P=,(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
设λ1,λ2是n阶矩阵A的两个不同特征值,x1,x2分别是属于λ1,λ2的特征向量.证明:x1+x2不是A的特征向量.
设可微函数f(x,y)在点(x0,y0)取得极小值,则下列结论正确的是()
随机试题
(2010年10月)里格斯认为,在现代工业社会中,成为各种利益和要求的汇聚点和表达者的是_________。
下列不可以使合同发生无效的是()。
石方开挖使用的爆破方法中大多采用集中药包的是()。
在索洛模型中,技术进步是内生变量。()
下列不属于执行理财规划方案原则的是()。
重庆火锅的原料主要有下列的()。
截至2012年年底,我国全年新增网民5090万人(其中农村新增1960万人),互联网普及率为42.1%,较2011年年底提升3.8个百分点,网民中使用手机上网的用户占比由上年年底的69.3%提升至74.5%。微博用户同比增加5873万人,网民中微博用户的比
现代社会的种种特征对教育系统具有决定作用。()
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
年画(NewYearPicture)是中国特有的一种绘画体裁。贴年画的习俗源于在房子的大门上贴门神(DoorGods)的传统。传统年画以精美的木刻(blockprint)和鲜艳的色彩闻名。主题主要是花鸟、可爱的婴儿、神话传说与历史故事等,表达人们祈望
最新回复
(
0
)