首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列结论正确的是 ( )
下列结论正确的是 ( )
admin
2019-08-12
58
问题
下列结论正确的是 ( )
选项
A、z=f(x,y)在点(x
0
,y
0
)某邻域内两个偏导数存在,则z=f(x,y)在点(x
0
,y
0
)处连续
B、z=f(x,y)在点(x
0
,y
0
)某邻域内连续,则z=f(x,y)在点(x
0
,y
0
)处两个偏导数存在
C、z=f(x,y)在点(x
0
,y
0
)某邻域内两个偏导数存在且有界,则z=f(x,y)在点(x
0
,y
0
)处连续
D、z=f(x,y)在点(x
0
,y
0
)某邻域内连续,则z=f(x,y)在点(x
0
,y
0
)该邻域内两个偏导数有界
答案
C
解析
二元函数的连续性与偏导数之间没有必然的联系.设在(x
0
,y
0
)某邻域U内,对于任意(x,y)∈U,有|f’
x
(x,y)|≤M,|f’
y
(x,y)|≤M(M为正常数).
由微分中值定理,有
|f(x,y)一f(x
0
,y
0
)|≤|f(x,y)一f(x,y
0
)|+|f(x,y
0
)一f(x
0
,y
0
)|
=|f’
y
(x,y
0
+θ
1
Ay)·△y|+|f’
x
(x
0
+θ
2
△x,y
0
)·△x|
≤M(|△x|+|△y|),
这里△x=x—x
0
,△y=y—y
0
,0<θ
1
,θ
2
<1.
当
时,有△x→0,△y→0,必有
|f(x,y)一f(x
0
,y
0
)|≤M(|△x|+|△y|)→0,
故f(x,y)在点(x
0
,y
0
)处连续.
转载请注明原文地址:https://kaotiyun.com/show/EuN4777K
0
考研数学二
相关试题推荐
(97年)就k的不同取值情况,确定方程x一=k在开区间内根的个数,并证明你的结论.
(04年)设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求
(87年)求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕Ox轴旋转而成旋转体体积V.
(2015年)设矩阵A=,且A3=O.(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
(1998年)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵.AT是4阶矩阵A的转置矩阵.求A.
(18)设实二次型f(x1,x2,x3)=(x1-x3+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数.(1)求f(x1,x2,x3)=0的解;(2)求f(x1,x2,x3)的规范形.
设则当x→0时,f(x)与g(x)相比是()
函数的定义域为_____________.
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
曲线y=(x一1)2(x一3)2的拐点个数为()
随机试题
钙增敏药
急性阑尾炎病人,10小时前脐周痛,现腹痛加剧,转移至右下腹,病变尚未波及腹膜壁层。其腹痛的发生机制是
下列哪一选项体现了法律的可诉性特征?
下列关于城市建设用地使用权的说法,正确的是()。
输入植物、种子、种苗及其他繁殖材料的,应当在进境前( )天报检。
表演游戏
Happypeopleworkdifferently.They’remoreproductive,morecreative,andwillingtotakegreaterrisks.Andanewresearchsug
Atatimewhentheworldisshortofcausesforcelebration,hereisacandidate:withinthenextfewmonthswomenwillcrossth
A、Waiterandcustomer.B、Patientanddoctor.C、Wifeandhusband.D、Directorandpupil.B女士说她的嗓子痛,男士看了后,说不是很严重,因此可以从中推断出女士是在看病,所以
TheincreasingAmericanizationofJapaneselifeisevidentinmanyways.Onesuchwayisthegrowingpopularityofcreditcards.
最新回复
(
0
)