首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证: f(x—y)dxdy=∫—22f(t)(2一|t|)dt.
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证: f(x—y)dxdy=∫—22f(t)(2一|t|)dt.
admin
2019-08-11
48
问题
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证:
f(x—y)dxdy=∫
—2
2
f(t)(2一|t|)dt.
选项
答案
先将二重积分I=[*](x一y)dxdy化为累次积分 I=∫
—1
1
dx∫
—1
f(x—y)dy. 令x—y=t,则 I=一∫
—1
1
dx∫
x+1
x—1
f(t)dt=∫
—1
1
dx∫
x—1
x+1
f(t)dt. 进一步化为定积分. 对I=∫
—1
1
[∫
x—1
x+1
f(t)dt]dx作分部积分,有 I=[x∫
x—1
x+1
f(t)dt]|
—1
1
—∫
—1
1
x[f[x+1)一f(x一1)]dx =∫
0
2
f(t)dt+∫
—2
0
f(t)dt—∫
0
2
(t—1)f(t)dt+∫
—2
0
(t+1)f(t)dt =∫
—2
2
f(t)dt+∫
—2
2
(1~|t|)f(t)dt=∫
—2
2
(2一|t|)f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/CyN4777K
0
考研数学二
相关试题推荐
设n为正整数,证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为an;
(1)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明AB和BA有相同的特征值,且AB~BA;(2)对一般的n阶矩阵A,B,证明AB和BA有相同的特征值,并请同是否必有AB~BA?说明理由.
设n为正整数,f(x)=xn+x-1.证明对于给定的n,f(x)在区间(0,+∞)内存在唯一的零点xn;
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1.求f(x),并要求证明:得出来的f(x)在区间[0,+∞)上的确存在反函数.
(10年)函数y=In(1—2x)在x=0处的n阶导数y(n)(0)=________.
(04年)设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求
(91年)设函数f(x)在(一∞,+∞)内有定义.x0≠0是函数f(x)的极大点,则
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=一1,求极限
(2015年)设矩阵A=,且A3=O.(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵.求X.
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
随机试题
A.α1受体阻滞剂B.氢氯噻嗪C.卡托普利D.维拉帕米高血压病合并糖尿病者首选
A.副作用B.毒性反应C.变态反应D.后遗效应E.特异质反应药物引起的与免疫反应有关的生理功能障碍或组织损伤是()。
建筑设备工程中,分项、分部工程是怎样划分的?
开展土地登记代理业务的基本要求包括()。
张某欲购买一套住房,委托甲房地产经纪机构(以下简称甲机构)寻找房源并签订了经纪合同。甲机构寻找到的合适房源为李某的住房。该住房位于某幢住宅楼的二层,该住宅楼北侧为主城区高架桥,南侧为农贸市场。房屋主体结构完好,门窗及厨卫部分设施虽然有损坏,但不严重,经过简
防水混凝土养护时间不得少于()。
截至2007年年底,共有()家基金管理公司获得QDII资格,()只QDII基金进入运作期。
A、7B、12C、2D、4A将每一格外圈的两个数字相乘,将乘积放入内圈顺时针隔开2格的位置,则12×?=84→?=7。故本题正确答案为A。
一国名义汇率升值在短期内一定能够削减已经存在的贸易顺差吗?请依据相关理论进行分析。
Becausecuriosityisdeemedthe(i)______ofthescientifictemperament,theoreticalphysicistRichardFeynman,renownedforhis
最新回复
(
0
)