首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证: f(x—y)dxdy=∫—22f(t)(2一|t|)dt.
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证: f(x—y)dxdy=∫—22f(t)(2一|t|)dt.
admin
2019-08-11
47
问题
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证:
f(x—y)dxdy=∫
—2
2
f(t)(2一|t|)dt.
选项
答案
先将二重积分I=[*](x一y)dxdy化为累次积分 I=∫
—1
1
dx∫
—1
f(x—y)dy. 令x—y=t,则 I=一∫
—1
1
dx∫
x+1
x—1
f(t)dt=∫
—1
1
dx∫
x—1
x+1
f(t)dt. 进一步化为定积分. 对I=∫
—1
1
[∫
x—1
x+1
f(t)dt]dx作分部积分,有 I=[x∫
x—1
x+1
f(t)dt]|
—1
1
—∫
—1
1
x[f[x+1)一f(x一1)]dx =∫
0
2
f(t)dt+∫
—2
0
f(t)dt—∫
0
2
(t—1)f(t)dt+∫
—2
0
(t+1)f(t)dt =∫
—2
2
f(t)dt+∫
—2
2
(1~|t|)f(t)dt=∫
—2
2
(2一|t|)f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/CyN4777K
0
考研数学二
相关试题推荐
设微分方程及初始条件为是否存在常数y1,使对应的解y=y(x)存在斜渐近线?若存在请求出此y1,及相应的斜渐近线方程.
设D={(x,y)|(x-1)2+(y-1)2≤2},则(x-y)dσ=()
设3维向量组α1,α2线性无关,β1,β2线性无关.证明存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;
设向量组(Ⅰ)α1,α2,α3,α4线性无关,则和(Ⅰ)等价的向量组是()
设函数y(x)在区间[1,+∞)上具有一阶连续导数,且满足y(1)=及x2yˊ(x)+∫1x(2t+4)yˊ(t)dt+2∫1xy(t)dt=,求y(x).[img][/img]
设f(x)在区间[0,+∞)上可导,f(0)=0,g(x)是f(x)的反函数,且∫0f(x)g(t)dt+∫0xf(t)dt=xex-ex+1.求f(x),并要求证明:得出来的f(x)在区间[0,+∞)上的确存在反函数.
(10年)(I)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限
(05年)如图.曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3.2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
(18年)设平面区域D由曲线,(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
(91年)利用导数证明:当x>1时,有不等式
随机试题
没有领导与指导关系的机关之间()
试述赞助活动的实施步骤。
在生产安全事故应急救援方面,施工单位应当做哪些工作?()
项目财务评估包括()。
国有企业的主要特点包括()。
零售商业物业经营管理工作的主要模块包括()。
设y=ln(l+3一x),则dy=________.
每个使用Swing构件的程序必须有一个()。
StatesExperimentWithOut-of-ClassroomLearningAttheendofthismonth,mostofOhio’steenagerswillshakeofftheirsum
"Humansshouldnottotrytoavoidstressanymorethantheywouldshunfood,loveorexercise",saidDr.HansSelye,thefirst
最新回复
(
0
)