首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证: f(x—y)dxdy=∫—22f(t)(2一|t|)dt.
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证: f(x—y)dxdy=∫—22f(t)(2一|t|)dt.
admin
2019-08-11
61
问题
设f(t)连续,区域D={(x,y)||x|≤1,|y|≤1},求证:
f(x—y)dxdy=∫
—2
2
f(t)(2一|t|)dt.
选项
答案
先将二重积分I=[*](x一y)dxdy化为累次积分 I=∫
—1
1
dx∫
—1
f(x—y)dy. 令x—y=t,则 I=一∫
—1
1
dx∫
x+1
x—1
f(t)dt=∫
—1
1
dx∫
x—1
x+1
f(t)dt. 进一步化为定积分. 对I=∫
—1
1
[∫
x—1
x+1
f(t)dt]dx作分部积分,有 I=[x∫
x—1
x+1
f(t)dt]|
—1
1
—∫
—1
1
x[f[x+1)一f(x一1)]dx =∫
0
2
f(t)dt+∫
—2
0
f(t)dt—∫
0
2
(t—1)f(t)dt+∫
—2
0
(t+1)f(t)dt =∫
—2
2
f(t)dt+∫
—2
2
(1~|t|)f(t)dt=∫
—2
2
(2一|t|)f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/CyN4777K
0
考研数学二
相关试题推荐
微分方程yy″+(yˊ)2=yyˊ满足初始条件y|x=0=1,yˊ|x=0=的特解是______.
设f(u)为u的连续函数,并设f(0)=a>0,又设平面区域σt={(x,y)||x|+|y|≤t,t≥0},Ф(t)=f(x2+y2)dxdy.则Ф(t)在t=0处的右导数Ф+(0)=()
设α(1,2,3,4)T,β(3,-2,-1,1)T,A=αβT.求A的特征值,特征向量;
设A是3阶方阵,有3个特征值为0,1,1,且不相似于对角矩阵,则r(E-A)+r(A)=______.
______.
设f″(x0)存在,且,则f″(x0)=______.
(06年)设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是
(10年)设函数y=f(x)由参数方程(t>一1)所确定,其中ψ(t)具有2阶导数,且.ψ’(1)=6,已知,求函数ψ(t).
(06年)设函数f(u)在(0,+∞)内具有二阶导数.且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明:(2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
随机试题
f(x)=-cosπx+(2x-3)3+(x-1)在区间(-∞,+∞)上零点个数为()
在分析中,下列情况会导致系统误差的是()。
若要用二进制数表示十进制数的0到999,则至少需要______位。
有关急性心肌梗死室间隔破裂穿孔的临床特点正确的是
A、麦角菌科B、多孔菌科C、棕榈科D、伞形科E、百合科茯苓来源于
()不属于组织计划制定要注意的问题。
【背景资料】某项目部承建居民区施工道路工程,制定了详细的交通导行方案,统一设置了各种交通标志、隔离设施、夜间警示信号,沿街居民出入口设置了足够的照明装置。工程要求设立降水井,设计提供了地下管线资料。施工中发生如下事件:事件一:由于位置狭窄,部分围挡
按照审计准则的规定,下列有关总体审计策略和具体审计计划的说法中表述正确的有()。
甲被宣告死亡后,其妻乙改嫁丙。在丙死亡1年后,甲父丁得知甲仍然在世,经过通讯联系后,遂向法院申请撤销死亡宣告。死亡宣告撤销后,甲、乙的婚姻关系()。
A.equippingB.exploreC.presentD.realisticE.noticeablyF.growingupG.interacting
最新回复
(
0
)