首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
将三封信随机地投入编号为1,2,3,4的四个邮筒。记X为1号邮筒内信的数目,Y为有信的邮筒数目。求: (Ⅰ)( X,Y)的联合概率分布; (Ⅱ) Y的边缘分布; (Ⅲ)在X =0的条件下,关于Y的条件分布。
将三封信随机地投入编号为1,2,3,4的四个邮筒。记X为1号邮筒内信的数目,Y为有信的邮筒数目。求: (Ⅰ)( X,Y)的联合概率分布; (Ⅱ) Y的边缘分布; (Ⅲ)在X =0的条件下,关于Y的条件分布。
admin
2018-01-12
98
问题
将三封信随机地投入编号为1,2,3,4的四个邮筒。记X为1号邮筒内信的数目,Y为有信的邮筒数目。求:
(Ⅰ)( X,Y)的联合概率分布;
(Ⅱ) Y的边缘分布;
(Ⅲ)在X =0的条件下,关于Y的条件分布。
选项
答案
(Ⅰ)根据题意,(X,Y)的全部可能取值为(0,1),(0,2),(0,3),(1,2),(1,3),(2,2),(3,1),再分别计算相应的概率。 事件{X=0,Y=1}表示“三封信均投入后3个邮筒中的某一个邮筒内”。根据古典概型公式,样本空间所含样本点数为4
3
=64,事件{X=0,Y=1}的样本点数为C
3
1
=3,于是 P{X=0,Y=1}=[*] 类似地可以计算出各有关概率值,列表如下: [*] (Ⅱ)从表中看出Y只取1,2,3三个可能值,相应概率分别是对表中p
ij
的各列求和。于是Y的边缘分布为表中最下行值。 [*] 在X=0条件下,关于Y的条件分布,可以应用上述公式计算出来,列表如下: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BtX4777K
0
考研数学三
相关试题推荐
设f1(x)为标准正态分布的概率密度,f2(x)为[一1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1)=。记Fz(z)为随机变量Z=xy的分布函数,则函数Fz(z)的间断点个数为
袋中有a个白球与b个黑球.每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率.
统计资料表明,男性患色盲的概率为5%,现有一批男士做体检.则事件“发现首例患色盲的男士已检查了30名男士”的概率α为______.
已知X,Y为随机变量且P{X≥0,Y≥0}=,P{X≥0}=P{Y≥0}=设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=______,P(B)=_____
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为()
连续抛掷一枚硬币,第k次(k≤n)正面向上在第n次抛掷时出现的概率为()
设X服从[a,b]上的均匀分布,X1,…,Xn为简单随机样本,求a,b的最大似然估计量.
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X—Y,(I)求Z的概率密度f(x,σ2);(Ⅱ)设z1,z2,…,zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2…,xn中小于1的个数,求θ的最大似然估计.
随机试题
管壳式换热器属于()
简述矩阵型结构的优缺点。
A./0B./1C./2D./3E./6表示肿瘤是否良性或恶性未肯定的是
Internet上许多复杂网络和不同类型计算机之间能够互相通信的基础是()。
贷款担保的作用主要体现在()。
关于契税的计税依据,下列表述正确的有()。
旅行社责任保险期限为()。
法相宗
较普遍的假设认为,当一位慷慨的赞助人捐赠了有潜力的展品时,博物馆得到了财政上的支持。但是在事实上,捐赠物品需要贮藏空间,那不会是免费的,还需要非常昂贵的日常维护。所以,这些赠品加剧而非减轻了对博物馆财政资源的需求。下面哪个选项,如果正确,最严重地削弱了以上
下列与Access表相关的叙述中,错误的是
最新回复
(
0
)