首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2018-08-12
39
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
),得A的另一个特征值为λ
2
=-1.因为α
1
,α
2
,α
3
线性无关,所以α
1
~α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/C1j4777K
0
考研数学二
相关试题推荐
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
求双纽线(x2+y2)2=a2(x2-y2)所围成的面积.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
求微分方程y"+4y’+4y=0的通解.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
求极限:
随机试题
A.无反应(-)B.弱阳性(+)C.阳性(++)D.强阳性(+++)E.强阳性(++++)迟发型皮内试验出现红肿、硬结、水疱为
椎一基底动脉系统TIA一般不出现
久病患者,纳食减少,疲乏无力,腹部胀满,但时有缓减,腹痛而喜按,舌胖嫩而苔润,脉细弱而无力。其病机是
喉痉挛的诱发因素有()。
无机结合料稳定材料的目标配合比设计内容包括选择级配范围、确定结合料类型及掺配比例、验证混合料相关的设计及施工技术指标。()
土石坝土料填筑的压实参数主要包括()。
某建设工程总造价为3500万。建设方与施工方在合同中约定:无论何种原因,延误工期一日,施工单位应支付建设单位违约金10万元。后工程因多种原因共延误120天,则下列表述中正确的是()。
在文书校对中,只看校样不看原稿的校对方法称为()。
请阅读下列材料,并按要求作答。[img][/img]如指导高学段学生学习本节课内容,试确定教学目标。
关于劳动与技术教育,下列说法正确的是()。
最新回复
(
0
)