首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)求矩阵A的特征值; (2)判断矩阵A可否对角化.
admin
2018-08-12
56
问题
设A是三阶矩阵,α
1
,α
2
,α
3
为三个三维线性无关的列向量,且满足Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)求矩阵A的特征值;
(2)判断矩阵A可否对角化.
选项
答案
(1)因为α
1
,α
2
,α
3
线性无关,所以α
1
+α
2
+α
3
≠0, 由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),得A的一个特征值为λ
1
=2; 又由A(α
1
-α
2
)=-(α
1
-α
2
),A(α
2
-α
3
)=-(α
2
-α
3
),得A的另一个特征值为λ
2
=-1.因为α
1
,α
2
,α
3
线性无关,所以α
1
~α
2
与α
2
-α
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,即A的特征值为2,-1,-1. (2)因为α
1
-α
2
,α
2
-α
3
为属于二重特征值-1的两个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/C1j4777K
0
考研数学二
相关试题推荐
设函数f(u,v)满足f(x+y,)=x2一y2,则与依次是
证明:对任意的x,y∈R且x≠y,有
平面曲线L:绕x轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求椭圆所围成的公共部分的面积.
计算二重积分
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的1/8,求全部融化需要的时间.
求函数z=x2+y2+2x+y在区域D:x2+y2≤1上的最大值与最小值.
|A|是n阶行列式,其中有一行(或一列)元素全是1,证明:这个行列式的全部代数余子式的和等于该行列式的值.
用导数定义证明:可导的周期函数的导函数仍是周期函数,且其周期不变.
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)