首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足 y’’(x)+p(x)y’(x)-q(x)y(x)=f(x), y(a)=y(b)=0, 其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足 y’’(x)+p(x)y’(x)-q(x)y(x)=f(x), y(a)=y(b)=0, 其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q0>0使得q(x)≥q0,存在
admin
2018-11-16
97
问题
设函数y(x)在[a,b]上连续,在(a,b)内二次可导,且满足
y
’’
(x)+p(x)y
’
(x)-q(x)y(x)=f(x),
y(a)=y(b)=0,
其中函数p(x),q(x)与f(x)都在[a,b]上连续,且存在常数q
0
>0使得q(x)≥q
0
,存在常数F>0使得︱f(x)︱≤F,求证:当xε[a,b]时︱y(x)︱≤
。
选项
答案
由y(x)在[a,b]上连续知y(x)在[a,b]上取得它的最大值与最小值,即存在x
1
ε[a,b]使得y(x
1
)是y(x)在[a,b]上的最大值,又存在x
2
ε[a,b]使得y(x
2
)是y(x)在[a,b]上的最小值。无妨设最大值y(x
1
)>0,而最小值y(x
2
)<0。由于y(a)=y(b)=0,可见x
1
ε[a,b],x
2
ε[a,b]。 由极大值的必要条件可得y
’
(x
1
)=0,y
’’
(x
1
)≤0,从而在最大值点x=x
1
处有f(x
1
)= y
’’
(x
1
)+p(x
1
)y
’
(x
1
)-q(x
1
)y(x
1
)=y
’’
(x
1
)- q(x
1
)y(x
1
)→q(x
1
)y(x
1
)=y
’’
(x
1
-f(x
1
)≤-f(x
1
)→y(x
1
)≤[*]。 类似由极小值的必要条件可得y
’
(x
2
)=0,y
’’
(x
2
)≥0,从而在最小值点x=x
2
处有f(x
2
)=y
’’
(x
2
)+p(x
2
)y
’
(x
2
)-q(x
2
)y(x
2
)=y
’’
(x
2
)-q(x
2
)y(x
2
)→q(x
2
)y(x
2
)=y
’’
(x
2
)-f(x
2
)≥-f(x
2
)→y(x
2
)≥[*]。 综合以上的讨论即得当xε[a,b]时有[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/C8W4777K
0
考研数学三
相关试题推荐
设函数y=y(x)满足△y=△x+0(△x),且y(1)=1,则∫01y(x)dx=________.
设矩阵有一个特征值为3.求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:设U,V不相关,求常数a,b之间的关系.
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2—2A=0,该二次型的规范形为________.
设fn(x)=x+x2+…+xn(n≥2).证明方程fn(x)=1有唯一的正根xn;
设某种元件的使用寿命X的概率密度为f(x;θ)=其中0>0为未知参数。又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值。
设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11,为【】
随机试题
关于听神经瘤与三叉神经鞘瘤的鉴别诊断,最有帮助的征象是
静脉石是指
男,65岁,“脑梗死”后2个月,右侧肢体瘫痪就诊康复科。体格检查:右上肢肌张力增高,出现共同运动成分,无关节运动;右手肌张力低,无运动;右下肢出现共同运动,在坐位可完成髋、膝、踝屈曲。Brunnstrom运动功能评价,右上肢处于
在合同履行阶段应当相互协作,如发生不可抗力时,应当相互告知,尽量减少损失。这体现了《中华人民共和国合同法》的( )原则。
Throughsomuchtrouble,helearned_________everyoneneededfriendshipand_________selfconfidenceisimportant.
“望果节”是()的传统节日。
2009年全国研究机构R&D经费995.9亿元,是2000年的3.9倍,年平均增长16.2%。按活动类型分,基础研究经费110.6亿元,占11.1%;应用研究经费350.9亿元,占35.2%;试验发展经费534.4亿元,占53.7%。基础研究、应用
我国刑法关于溯及力的规定采取______。
序言性注释的主要内容不包括______。
Therearenotmanyteacherswhoarestrong______oftraditionalmethodsinEnglishteaching.
最新回复
(
0
)