已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.

admin2017-05-10  20

问题 已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.

选项

答案设三角形的三边长为a,b,c,并设以AC边为旋转轴(见图4.6),A C上的高为h,则旋转所成立体的体积为 [*] 又设三角形的面积为S,于是有 [*] 问题化成求V(a,b,c)在条件a+b+c一2p=0下的最大值点,等价于求[*] 在条件a+b+c一2p=0下的最大值点. 用拉格朗日乘子法.令F(a,b,c,λ)=V0(a,b,c)+λ(a+b+c一2p),求解方程组 [*] 比较①,③得a=c,再由④得 b=2(P一a). ⑤ 比较①,②得 b(p—b)=(P—a)p. ⑥ 由⑤,⑥解出[*] 由实际问题知,最大体积一定存在,而以上解又是方程组的唯一解.因而也是条件最大值点.所以当三角形的边长分别为[*] 时,绕边长为[*]的边旋转时,所得立体体积最大. [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/CPH4777K
0

随机试题
最新回复(0)