首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y’’+2y’-3y=ex+x的通解.
求微分方程y’’+2y’-3y=ex+x的通解.
admin
2016-10-20
59
问题
求微分方程y’’+2y’-3y=e
x
+x的通解.
选项
答案
相应的齐次方程为y’’+2y’-3y=0,特征方程为λ
2
+2λ-3=0,特征根为λ
1
=1,λ
2
=-3,齐次方程的通解为C
1
e
x
+C
2
e
-3x
. 为求得原方程的特解,分别考虑下列两个非齐次微分方程的特解: y’’+2y’-3y=e
x
和y’’+2y’-3y=x. 对于第一个方程,α=1是特征根,故设特解y*
1
(x)=Axe
x
,将 y*
1
(x)=Ae
x
(x+1), y’’*
1
(x)=Ae
x
(x+2) 代入原方程,比较系数可得A=[*] 对于第二个方程,非齐次项f(x)=x,0不是特征根,故设特解y*
2
(x)=Bx+C,将 y’*
2
(x)=B, y’’*
2
=0 代入原方程,比较系数可得B=[*] 利用解的叠加原理即得微分方程的通解为 [*] ,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CST4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
化下列方程为齐次型方程,并求出通解:(1)(2y-x-5)dx-(2x-y+4)dy=0;(2)(2x-5y+3)dx-(2x+4y-6)dy=0;(3)(x+y)dx+(3x+3y-4)dy=0;(4)(y-x+1)dx-(y+x+5)dy=0.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
设非齐次线性微分方程yˊ+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().。
随机试题
胆胃不和,痰热内扰,症见虚烦不眠,惊悸不宁者,治宜选用()(1995年第52题)
MsgBox函数使用的正确语法是()。
A、HCO3-↓,pH↑,PaCO2↓B、HCO3-正常,pH↓,PaCO2↓C、HCO3-正常或↑,pH↓,PaCO2↓D、HC3-↑,pH↑,PaCO2正常或↑E、HCO3-↓,pH↓,PaCO2正常或↓代谢性碱中毒
在法人治理结构中,()是监督机构,向股东会负责,对董事会和经营管理层的决策和经营管理活动进行监督。
甲公司系增值税一般纳税人,销售商品适用增值税税率为17%,发生的有关债务重组经济业务如下:(1)2×17年1月1日与丙银行协商并达成协议,将丙银行于2×16年1月1日贷给甲公司的3年期,年利率为9%,本金为500万元的贷款进行债务重组,丙银行未对该项贷款
皮亚杰认为,儿童在判断行为对错时,是()。
Whichflightwillthemantake?
WhydoesMrs.Smithfeelsad?
HowtoReducePresentationStress1.Causesofpresentationstress■Fearofbeing【T1】______【T1】______■D
【R1】______Ifthesettingisscenic,itsclaimstofameareslender:athrivingumbrellaindustryandareputationasthecoldest
最新回复
(
0
)