首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,…,xn)=XTAX是正定二次型.证明: |A|>0;
设f(x1,x2,…,xn)=XTAX是正定二次型.证明: |A|>0;
admin
2018-08-22
70
问题
设f(x
1
,x
2
,…,x
n
)=X
T
AX是正定二次型.证明:
|A|>0;
选项
答案
用f正定的充要条件证:f=X
T
AX正定[*]存在可逆矩阵C,使得C
T
AC=E. A=(C
T
)
-1
C
-1
[*]|A|=|C
-1
|
2
>0. 或用反证法:若|A|≤0,则|A|=λ
1
λ
2
…λ
n
≤O,必有λ
t
≤0. 设λ
i
对应的特征向量为α
i
,则有Aα
i
=λ
i
α
i
,两端左边乘α
i
T
,得 α
i
T
Aα
i
=λ
i
α
i
T
α
i
≤0 (因α
i
T
α
i
>0,λ
i
≤0), 这和f是正定二次型矛盾,故|A|>0.
解析
转载请注明原文地址:https://kaotiyun.com/show/CTj4777K
0
考研数学二
相关试题推荐
已知非齐次线性方程组A3×4X=b①有通解k1[1,2,0,一2]T+k2[4,一1,一1,一1]T+[1,0,一1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是______.
设函数,则点(0,0)是函数z的()
设γ1,γ2,…,γs和η1,η2,…,ηs分别是AX=0和BX=0的基础解系,证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
0被积函数是奇函数,在对称区间[一2,2]上积分为零.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
(1)设D=((x,y)|a≤x≤b,c≤y≤d),若fxy"与fyx"在D上连续,证明:(2)设D为xOy平面上的区域,若fxy"与fyx"都在D上连续,证明:fxy"与fyx"在D上相等.
计算曲线y=ln(1-x2)上相应于0≤x≤的一端弧的长度.
设矩阵已知A的一个特征值为3.试求y;
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
随机试题
氧气自动切割的必要条件之一是燃点要高于熔点。()
科斯定律的理论前提是
呼吸衰竭的血气诊断标准是
企业法律顾问的工作原则是()
某高速公路工程全长160km,跨甲、乙两省市,划分为甲1、甲2、甲3和乙1、乙2、五个施工合同段,并相应设置现场监理机构。请按照监理规范的要求选择适当的监理组织形式,画出监理组织结构图,并分析该组织模式的优缺点。
以下不属于员工动态特征的是()。
女性,80岁。慢性咳嗽咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性粒细胞占90%,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE-3.5mmol/L引起
二战后世界经济走向统一的过程中,仍然存在着多样性,出现了“两种体系、三种国家”,下列不属于社会主义国家经济类型的是()。
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真.最能支持上述论证的结论?
在TCP/IP网络中,主机A和主机B通过一路由器互联,提供两主机应用层之间通信的层是(248),提供机器之间通信的层是(249),具有IP层和网络接口层的设备是(250);在A与路由器和路由器与B使用不同物理网络的情况下,主机A和路由器之间传送的数据帧与路
最新回复
(
0
)