首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(99年)设函数f(x)在闭区间[一1,1]上具有三阶连续导数.且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"(ξ)=3.
(99年)设函数f(x)在闭区间[一1,1]上具有三阶连续导数.且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"(ξ)=3.
admin
2018-07-27
46
问题
(99年)设函数f(x)在闭区间[一1,1]上具有三阶连续导数.且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"(ξ)=3.
选项
答案
由泰勒中值定理可知 f(x)=f(0)+f’(0)x+[*] 其中η介于0与x之间,x∈[一1,1] 分别令x=一1和x=1,并结合已知条件得 [*] 两式相减可得 f"’(η
1
)+f"’(η
2
)=6 由f"’(x)的连续性,f"’(x)在闭区间[η
1
,η
2
]上有最大值和最小值,设它们分别为M和m,则有 [*] 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](-1,1) 使[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Cbj4777K
0
考研数学二
相关试题推荐
a=1,b=-1/2
求下列各函数的n阶导数(其中,a,m为常数):(1)y=ax(2)y=ln(1+x)(3)y=cosx(4)y=(1+x)m(5)y=xex
设y=f(x)在(1,1)邻域有连续二阶导数,曲线y=f(x)在点P(1,1)处的曲率圆方程为x2+y2=2,则f’’(1)=__________.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a2-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
(2004年试题,一)设函数z=z(x,y)由方程x=e2x-3x+2y确定,则_________.
(2011年试题,三)设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)外切线的倾角,若的表达式.
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程所确定.又设题中出现的分母不为零,则()
设奇函数f(x)在闭区间[-1,1]上具有2阶导数,且f(1)=1.证明(1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(-1,1),使得f"(η)+f’(η)=1.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ10)=f’(ξ2)=0.
随机试题
directionunderhungrunintocomeupmostwithintendbydrawtremblecometoFramton【G1】
女,63岁,因重症胰腺炎住院6个月,行胃肠外营养5个月,下列并发症中与肠外营养无直接关系的是
女性,27岁。左上第三磨牙颊向倾斜左上6食物嵌塞.拟拔除。最常用的麻醉方法是
遗产是可以与人身分离而独立转移给他人所有的财产。这是指遗产具有( )。
法定存款准备金率越高,存款扩张范围越大,即商业银行准备金越多。
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则()
试述概念模型的作用及数据库概念设计的基本步骤。
编译程序和解释程序都是()。
Java中流的实现是在【】的类层次结构内部定义的。
Recently,researchersinvestigatedtheforagingprofilesofbirdspeciesintwoseparateeucalyptusforestsinAustralia:Dryand
最新回复
(
0
)