首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3,求P-1AP.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3,求P-1AP.
admin
2014-08-19
56
问题
设A为3阶矩阵,a
1
,a
2
为A的分别属于特征值-1、1的特征向量,向量a
3
满足
Aa
3
=a
2
+a
3
,
(Ⅰ)证明a
1
,a
2
,a
3
线性无关;
(Ⅱ)令P=(a
1
,a
2
,a
3
,求P
-1
AP.
选项
答案
(Ⅰ)假设a
1
,a
2
,a
3
线性相关,则a
3
可由a
1
,a
2
线性表出, 可设a
3
=k
1
a
1
+k
2
a
2
,其中k
1
,k
2
不全为0, 否则由等式Aa
3
=a
2
+a
3
得到a
2
=0,不符合题设. 因为a
1
,a
2
为矩阵A的分别属于特征值-1,1的特征向量,所以Aa
1
=a
1
,Aa
2
=a
2
, 则Aa
3
=A(k
1
a
1
+k
2
a
2
)=-k
1
a
1
+k
2
a
2
=a
2
+k
1
a
1
+k
2
a
2
. 等式中a
1
,a
2
的对应系数相等,即[*] 显然此方程组无解,故假设不成立,从而可知a
1
,a
2
,a
3
线性无关. (Ⅱ)因为a
1
,a
2
,a
3
线性无关,所以矩阵P=(a
1
,a
2
,a
3
)可逆, 由于AP=A(a
1
,a
2
,a
3
)=(-a
1
,a
2
,a
2
+a
3
)=(a
1
,a
2
,a
3
)[*] 等式两边同时左乘矩阵P的逆矩阵P
-1
,可得P
-1
AP=P
-1
P[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Gk34777K
0
考研数学二
相关试题推荐
计算二重积分(2x2+y2-2x+2y)dxdy,其中D={(x,y)|x2+y2≤2x}。
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为-1.证明:存在ξ∈(0,1),使得fn(ξ)≥8。
设,则B等于()。
设矩阵仅有两个不同的特征值,若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
甲、乙两个盒子中有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球,令X,Y分别表示从甲盒和乙盒中取到的红球个数,则X与Y的相关系数为________.
=________.
设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵是()
设函数f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设曲线yn(x)=xn-x(n=2,3,4…)在区间[0,+∞)上与x轴所围无界区域的面积为S(n).
设集合A={北京,上海},B={南京,广州,深圳},求A×B与B×A
随机试题
高效液相色谱法用于含量测定时,对系统性能的要求
刚体作平动时,某瞬时体内各点的速度与加速度为:
()的主要投资对象是资本市场上的上市股票与债券,货币市场上的短期票据与银行同业拆借,以及金融期货、黄金、期权交易、不动产等。
根据现行国家工程建设消防技术标准的要求,下列供暖系统的设置不符合相关规定的是()。
居民乙因拖欠居民甲180万元款项无力偿还,2010年6月经当地有关部门调解,以房产抵偿该笔债务,居民甲因此取得该房产的产权并支付给居民乙差价款20万元。假定当地省政府规定的契税税率为5%。下列表述中正确的是()。(2010年)
阅读下列材料:为了让高中一年级学生能够完整地体验信息处理的全过程,教师通常会设计一个综合性的主题学习活动。“我的悠长假期”主题学习活动即以图像处理为栽体,让学生体验信息采集、加工与表达的全过程。下面是本次主题活动方案:活动目的:以图片处理为载体体验信息
“三弦”这种乐器属于民族乐器中的()类。
元认知指的是对认知的认知,即认知主体关于自己认知过程的知识和调节这些过程的能力,对思维和学习活动的知识和控制。元认知的实质是对认知活动的自我意识和自我调节。根据上述定义,以下包含元认知的是()。
DerVatergibt______TochterdenWagen.
I_______thepicturefromthewallinordertocleanit.
最新回复
(
0
)