首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3,求P-1AP.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足 Aa3=a2+a3, (Ⅰ)证明a1,a2,a3线性无关; (Ⅱ)令P=(a1,a2,a3,求P-1AP.
admin
2014-08-19
94
问题
设A为3阶矩阵,a
1
,a
2
为A的分别属于特征值-1、1的特征向量,向量a
3
满足
Aa
3
=a
2
+a
3
,
(Ⅰ)证明a
1
,a
2
,a
3
线性无关;
(Ⅱ)令P=(a
1
,a
2
,a
3
,求P
-1
AP.
选项
答案
(Ⅰ)假设a
1
,a
2
,a
3
线性相关,则a
3
可由a
1
,a
2
线性表出, 可设a
3
=k
1
a
1
+k
2
a
2
,其中k
1
,k
2
不全为0, 否则由等式Aa
3
=a
2
+a
3
得到a
2
=0,不符合题设. 因为a
1
,a
2
为矩阵A的分别属于特征值-1,1的特征向量,所以Aa
1
=a
1
,Aa
2
=a
2
, 则Aa
3
=A(k
1
a
1
+k
2
a
2
)=-k
1
a
1
+k
2
a
2
=a
2
+k
1
a
1
+k
2
a
2
. 等式中a
1
,a
2
的对应系数相等,即[*] 显然此方程组无解,故假设不成立,从而可知a
1
,a
2
,a
3
线性无关. (Ⅱ)因为a
1
,a
2
,a
3
线性无关,所以矩阵P=(a
1
,a
2
,a
3
)可逆, 由于AP=A(a
1
,a
2
,a
3
)=(-a
1
,a
2
,a
2
+a
3
)=(a
1
,a
2
,a
3
)[*] 等式两边同时左乘矩阵P的逆矩阵P
-1
,可得P
-1
AP=P
-1
P[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Gk34777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)T是齐次线性方程组(A*-4E)X=0的一个解向量。(1)求矩阵A;(2)求方程组(A*+6E)X=0的通解。
设随机变量X与y相互独立,均服从[0,3]上的均匀分布,则P{1<max{X,Y}≤2}=()
设a(x)=,则当x→0+时,α(x)是β(x)的()
设正数列{an}满足a1=a2=1,an=an-1+a2,n=3,4,5,…,且已知某常数项级数的部分和为Sn=(1/2)+(1/22)+(2/23)+(3/24)+(5/25)+(8/26)+(13/27)+(an-1/2n-1)+(an/2n
证明不等式:当a≥0,b≥0时,ea+b≥(e2/4)(a2+b2)。
设A,B均为三阶矩阵,将A的第一行加到第二行得到A1,将B的第二列和第三列交换得到B1,若A1B1=,则AB=__________。
设A是n阶矩阵,证明:(I)r(A)=1的充分必要条件是存在n阶非零列向量a,β,使得A=aβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
求极限
设集合A={1,2,a,b},B={2,4,c,d},已知A∪B={1,2,3,4,5,6},A∩B={2,4),A-B={1,3},那么a,b,c,d可以是[].
设集合A={北京,上海},B={南京,广州,深圳},求A×B与B×A
随机试题
设y=y(χ)由确定,则=________.
急性脓胸患者最根本的治疗措施是
引起非糖尿病酮症的原因不包括
医师处方写大贝或象贝时,应付
患者女,27岁,冠折2/3,已做完善根管治疗,咬合关系正常。以下哪种修复方案较恰当
下列含铅烟气中,可用碱液吸收法处理的有()。
Haveyoueverwonderedwhatourfutureislike?Practically,allpeople【B1】_____adesiretopredicttheirfuture【B2】_____Most
货币政策的具体目标包括()。
以下不属于国务院职权的有()。
YouareinterestedinClassicalMusic,soyoucanwatchTVat______.Ifyouwanttoknowaboutprogrammesofnextweek,which
最新回复
(
0
)