首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零件的平均
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零件的平均
admin
2016-10-24
76
问题
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:
问平均内径μ取何值时,销售一个零件的平均利润最大?
选项
答案
E(T)=一1×P(X<10)+20×P(10≤X≤12)一5P(X>12) =一Ф(10一μ)+20[Ф(12一μ)一Ф(10一μ)]一5[1一Ф(12一μ)] =25Ф(12一μ)一21Ф(10一μ)一5 [*] 解得μ=11一[*]≈10.9,所以当μ≈10.9时,销售一个零件的平均利润最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/CpT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
A、 B、 C、 D、 D根据事件的并的定义,凡是出现“至少有一个”,均可由“事件的并”来表示,而事件“不发生”可由对立事件来表示,于是“A,B,C至少有一个不发生”等价于“A,B,C中至少有一个发生”,故答
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率.[附表]其中Ф(x)表示标准正态分布函数.
设随机变量X服从正态分布N(μ1,σ12),随机变量y服从正态分布N(μ2,σ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有().
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
女性,35岁,反复发作右上腹痛伴寒战、发热4年,3天前再次出现同样症状。查体:体温40.5℃,脉搏130次/分,血压62/46mmHg,嗜睡,巩膜黄染,右上腹压痛及肌紧张,肝区叩痛明显。对该患者最可能的诊断是
同时麻醉颊神经、舌神经和下牙槽神经的穿刺部位是()
药品经营企业发现药品群体不良事件应当()
期货交易所会员的保证金不足时,期货交易所应当立即将该会员的期货合约强行平仓,以防风险。()
下列事项中,最终不会导致所有者权益变动的有()。
你单位组织一个新农业科技活动,邻乡镇的都跑来看,导致本乡镇秩序混乱,本乡镇群众不满,你怎么办?
已知关于x的方程x2一(n+1)x+2n一1=0的两根为整数,则整数n是().
在会议开始前,市场部助理小王希望在大屏幕投影上向与会者自动播放本次会议所传递的办公理念,按照如下要求完成该演示文稿的制作:为上述SmartArt智能图示设置由幻灯片中心进行“缩放”的进入动画效果,并要求上一动画开始之后自动、逐个展示SmartArt中的
近日,世界上最美丽的蝴蝶———光明女神蝶亮相武汉国际会展中心,着时让当地市民开了回(1)。据了解,这只光明女神蝶,曾在美国索斯比拍卖会上拍价达4万美元,(2)人民币约36万元,并载入了“吉尼斯世界”(3)。这种蝴蝶产于巴西、秘鲁等国,因数量极其稀少,
Accordingtogovernmentstatistics,menofallsocialclassesinBritainvisitpubsquiteoften,【21】______thekindofpubth
最新回复
(
0
)