首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1 =(1,-2,3) T ,α2 =(2,1,1) T ,β1= (-2,1,4) T ,β2=(-5,-3,5) T .求既可由α1,α2线性表出,也可由β1,β2线性表出的所有非零向
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1 =(1,-2,3) T ,α2 =(2,1,1) T ,β1= (-2,1,4) T ,β2=(-5,-3,5) T .求既可由α1,α2线性表出,也可由β1,β2线性表出的所有非零向
admin
2018-07-23
50
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
若α
1
=(1,-2,3)
T
,α
2
=(2,1,1)
T
,β
1
= (-2,1,4)
T
,β
2
=(-5,-3,5)
T
.求既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的所有非零向量ξ.
选项
答案
设ξ= k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
,则得齐次线性方程组是k
1
α
1
+ k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 将α
1
,α
2
,β
1
,β
2
合并成矩阵,并作初等行变换.得 [*] 解得 (k
1
,k
2
,λ
1
,λ
2
)=k(-1,2,-1,1). 故既可由α
1
,α
2
线性表出,又可以β
1
,β
2
线性表出的所有非零向量为 [*] 其中k是任意的非零常数 或[*] 其中k是任意的非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Csj4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 A
[*]
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
已知,当x→∞时,p,q取何值时f(x)为无穷小量?p,q取何值时f(x)为无穷大量?
设函数y=f(x)由方程e2x+y-cos(xy)=e—1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_______.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
设D={(x,y)|x2+y2≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分
设A为n阶矩阵,下列命题正确的是()
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
A.面浮足肿B.腹胀如鼓C.咳嗽痰少D.面色萎黄E.舌淡暗脾肺气虚证可见
设立全国性商业银行最低注册资本数额为()。
下列词语中没有错别字的一项是()。
著名的耶克斯-多德森定律告诉我们:对于难易适中的任务来说,学习动力水平为中等时,学习效果()。
80×86的I/O 口与主存储器地址编址方式为( )。
Pourcetteaffaireurgente,renseignez-vousvite______maire.
ScienceandTruth"FINAGLE"(欺骗)isnotawordthatmostpeopleassociatewithscience.Onereasonisthattheimageofthes
Ourinterestsseemto______atthispoint.
Completethetable.WriteNOMORETHANTHREEWORDSforeachanswer.
Peoplelikebeingtrusted.Theyareannoyed,angry,orfeelhurtiftheyareregardedwith【C1】______.Theythinkthattheyare【C
最新回复
(
0
)