首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求曲线x3-xy+y3=1(x≥0,y≥0)上点到坐标原点的最长距离与最短距离.
求曲线x3-xy+y3=1(x≥0,y≥0)上点到坐标原点的最长距离与最短距离.
admin
2014-08-19
84
问题
求曲线x
3
-xy+y
3
=1(x≥0,y≥0)上点到坐标原点的最长距离与最短距离.
选项
答案
点(x,y)到坐标原点的距离[*],问题为求目标函数[*]在约束条件x
3
-xy+y
3
=1(x≥0,y≥0)下的最大值和最小值.为方便求导,我们构造拉格朗日函数 F(x,y,λ)=x
2
+y
2
+λ(x
3
-xy+y
3
-1).解方程组[*] 由①,②消去λ得,(y-x)(3xy+x+y)=0,由于x≥0,y≥0,得y=x,代入③得唯一可能的极值点:x=y=1.另外,曲线L与x轴,y轴的交点分别为(1,0),(0,1).计算这些点到坐标原点的距离得d(1,1)=[*],d(1,0)=d(0,1)=1,故所求最长距离为[*],最短距离为1。
解析
[分析]本题考查二元函数的条件极值问题,用拉格朗日乘数法.
[评注]求最值问题时要注意考虑区域边界点或曲线端点的情况.
转载请注明原文地址:https://kaotiyun.com/show/Tj34777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=2x12+2x22+2x32+2ax1x2+2ax1x3+2ax2x3,a为正整数。(1)若f(x1,x2,x3)是正定二次型,求a的值;(2)求正交变换x=Qy,使二次型f(x1,x2,x3)化为标准形
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设X~N(0,1),Y=X+|X|,Y的分布函数为FY(y),则FY(y)间断点的个数为()
设函数f(x,y)连续,f(0,0)=0,又设F(x,y)=|x-y|f(x,y),则F(x,y)在点(0,0)处()
设函数f(x)=∫01|x2-t|dt,则f(x)在[0,1]上的最大值和最小值分别为()
设二维随机变量(X,Y)的联合分布函数为F(x,y),其边缘分布函数为FX(x)及FY(y),则P{X>x,Y≤y}=().
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得__________.
设曲线yn(x)=xn-x(n=2,3,4…)在区间[0,+∞)上与x轴所围无界区域的面积为S(n).
计算二重积分I=(x2+y2)dxdy,其中区域D由曲线y=,x2+y2=2x及直线x=2所围成。
随机试题
可治疗老年便秘、产后便秘的通便类药物是
王某与李某为一幢楼房的权属发生纠纷,起诉至人民法院。张某向人民法院主张该幢楼房归他所有,人民法院遂追加张某为第三人。其后原告王某申请撤诉,根据上述情况下列说法正确的是:
符合条件()时,用电单位宜设置自备电源。
若投资15万元建造一个任何时候均无残值的临时仓库,估计年收益为25000元,假定基准收益率为12%,仓库的寿命期为8年,则该项目()。
通过摆事实、讲道理进行教育的德育方法是___________。
当社会总需求小于社会总供给时,一般不宜采取()。
根据以下资料,回答以下题。2014年,某市十大产业链企业累计完成产值3528.8亿元,同比增长13.4%;实现主营业务收入3478.8亿元、利税348.9亿元、利润222.9亿元,同比分别增长13.0%、19.4%和19.5%。其中,十大产业链规
某眼镜店推出一款墨镜,该墨镜的利润为进价的25%,在“世界护眼日”当月,又推出了一款近视镜,该近视镜的利润为进价的15%,墨镜比近视镜的卖价贵142元,近视镜的进价是墨镜进价的84%,那么墨镜进价为多少元?
“江山多娇—2011.中国百家金陵画展(中国画)”,于11月16日上午在江苏省美术馆举行。(语料来源:《美术报》,2011年11月21日)
Theindustrialsocietieshavebeenextremelyproductiveduringthelasttwocenturies.Theeconomicadvancehasbeen【C1】______
最新回复
(
0
)