首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)求定积分an=∫02x(2x-x2)ndx,n=1,2,…; (Ⅱ)对于(I)中的an,证明an﹢1<an(n=1,2,…)且=0.
(I)求定积分an=∫02x(2x-x2)ndx,n=1,2,…; (Ⅱ)对于(I)中的an,证明an﹢1<an(n=1,2,…)且=0.
admin
2018-12-21
43
问题
(I)求定积分a
n
=∫
0
2
x(2x-x
2
)
n
dx,n=1,2,…;
(Ⅱ)对于(I)中的a
n
,证明a
n﹢1
<a
n
(n=1,2,…)且
=0.
选项
答案
(I)当n≥2时,计算a
n
=∫
0
2
x(2x-x
2
)
n
dx=∫
0
2
x[1-(1-x)
2
]
n
dx,作积分变量代换,令1-x=t,于是 a
n
=∫
1
-1
(1一t)(1-t
2
)
n
(-dt)=∫
-1
1
(1-t
2
)
n
dt-∫
-1
1
t(1-t
2
)
n
dt=∫
-1
1
(1-t
2
)
n
dt=2∫
0
1
(1-t
2
)
n
dt. 下面用分部积分法计算: a
n
=2∫
0
1
(1﹣t
2
)
n
dt=2∫
0
1
(1﹣t
2
)(1﹣t
2
)
n﹣1
dt =a
n﹣1
﹣2∫
0
1
t(1﹣t
2
)
n﹣1
tdt =a
n﹣1
﹢[*]∫
0
1
td[(1﹣t
2
)
n
] =a
n﹣1
﹣[*]∫
0
1
(1﹣t
2
)
n
dt=a
n﹣1
﹣[*] [*] 其中a
1
=∫
0
2
x(2x﹣x
2
)dx=[*] (Ⅱ)由(I)知,以a
n
的迭代式显然有0﹤a
n
﹤a
n-1
(n=2,3,…).又 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/D8j4777K
0
考研数学二
相关试题推荐
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(1999年)计算
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2015年)已知函数f(χ)在区间[α,+∞)上具有2阶导数,f(a)=0,f′(χ)>0,f〞(χ)>0.设b>a,曲线y=f(χ)在点(b,f(b))处的切线与χ轴的交点是(χ0,0),证明a<χ0<b.
(2013年)曲线对应于t=1的点处的法线方程为_______.
(2012年)已知函数f(χ)满足方程f〞(χ)+f′(χ)-2f(χ)=0及f〞(χ)+f(χ)=2eχ.(Ⅰ)求f(χ)的表达式;(Ⅱ)求曲线y=f(χ2)∫0χf(-t2)dt的拐点.
(1990年)下列两个积分大小关系式:∫-2-1dχ_______∫-2-1dχ
(1999年)“对任意给定ε∈(0,1),总存在正整数N,当,n>N时,恒有|χn-a|≤2ε”是数列{χn}收敛于a的【】
(1997年)就k的不同取值情况,确定方程χ-sinχ=k在开区间(0,)内根的个数,并证明你的结论.
随机试题
患者,男性,40岁。有精神分裂症病史18年,第3次入院。入院后给予氟哌啶醇治疗,3天后加至30mg/d,第7天出现肌肉僵硬、震颤、吞咽困难。T39.8℃,意识不清,血清肌酸磷酸激酶升高。针对该患者的情况,有特效的治疗药物是
硫脲类最严重的不良反应是:
法人制度起源于西方,关于法人制度的下列表述正确的是哪一项?()
下列有关合并财务报表的表述。正确的有()。
旅游安全事故的处理应始终将()放在第一位。
【2015陕西汉中】下列关于网络成瘾描述不正确的是()。
教学过程是一种特殊的认识过程。
欧盟《传统植物药注册程序指令》大限将至,中药出口欧洲遭遇严冬,人们不禁对中药_______产生了不小的怀疑。这其中确有中药自身种植、生产加工不统一的原因,致使药效和安全性能受到国际市场_______,但究其深层原因;则与国际中药市场暗藏的利益争夺不无关系。
从所给四个选项中。选择最合适的一个填入问号处,使之呈现一定的规律性。
IfyourchildisaskingforUggbootsorapriceyhottoyfortheholidays,it’stimeforateachablemoment.Evenifyourkidh
最新回复
(
0
)