首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
admin
2013-08-30
94
问题
设齐次线性方程组
,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
选项
答案
由题设,方程组的系数矩阵为A=[*] 则|A|=[*] 当a≠b且a+(n-1)b≠0,即a≠(1-n)b时,方程组仅有零解. 当a=b时,对A可作初等行变换化为阶梯形[*] 则不难求得原方程组的基础解系为[*] 因此方程组的全部解是x=k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,其中k
1
,k
2
,…,k
n-1
为任意常数. 当a=(1-n)b时,同样对A作初等行变换化为阶梯形[*] 则可得此时基础解系为[*],从而原方程组的全部解是kξ,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/DD54777K
0
考研数学一
相关试题推荐
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.将β1β2,β3用α1,α2,α3线性表示.
设函数f(x,y)具有二阶连续偏导数,且满足f(0,0)=1,f’x(0,0)=2,f’y(0,y)=-3以及f”xx(x,y)=y,f”xy(x,y)=x+y,求f(x,y)的表达式.
设函数f(x)在(0,+∞)内具有二阶连续导数,且与f(1)=f’(1)=1.求函数f(r)的表达式.
设A为n阶方阵,且AAT=E,若|A|<0,证明|A+B|=0.
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
求下列函数的导数:;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
设y=f(x)有二阶连续导数,且满足xy“+3xy‘2=1-e-x.若f(0)=f’(0)=0,证明x>0时,
计算,其中Ω:x2+y2+z2≤1
求抛物面z=1+x2+y2的一个切平面,使该切平面与抛物面及圆柱面(x-1)2+y2=1围成的立体的体积最小,并求出最小体积.
随机试题
患儿,男,3岁,身长75cm,智力低下,鼻梁塌陷,舌体厚大,腹胀、便秘,有脐疝。为明确诊断,进一步应做的检查是
Katherinewalkedintoanewspaperoffice,anddemandedtoseetheeditor.Fortunately,theeditorwaspassingtheinquiryoffice
咽结合膜热的病原是疱疹性咽峡炎的病原是
男,60岁。左侧后牙自发痛2天。一年多来该侧后牙遇冷或热痛。2天前开始,夜痛不能人睡。查6°龋深,探敏感,叩痛(+),不松动。冷测引起剧痛。该患牙的诊断最可能是
现有阿司匹林粉末欲装胶囊,如果装量是0.55ml,应选用的胶囊大小号码是( )。现有阿司匹林粉末欲装胶囊,如果装量是0.33ml,应选用的胶囊大小号码是( )。
公安消防机构的工作人员在进行监督检查时,应当()。公安消防机构进行消防审核、验收等监督检查不得()。
下列关于净资产收益率的说法中,不正确的是()。
业主建筑物区分所有权的客体包括专有部分和共有部分,专有部分要求具有的特征有()。
()不属于配货包装类型。
历史上有名的汉律60篇包括《九章律》、《傍章律》、《越宫律》、《朝律》和《约法三章》。 ( )
最新回复
(
0
)