首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组 试问: (1)a为何值时,向量组线性无关? (2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
设向量组 试问: (1)a为何值时,向量组线性无关? (2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
admin
2021-02-25
63
问题
设向量组
试问:
(1)a为何值时,向量组线性无关?
(2)a为何值时,向量组线性相关,此时求齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的通解.
选项
答案
依题意有x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0.对方程组的系数矩阵A施以初等行变换,得 [*] 显然,当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为 x
1
+x
2
+x
3
+x
4
=0, 此时,方程组的通解为 [*] 其中k
1
,k
2
,k
3
为任意常数. 当a≠0时,由 [*] 显然,当a≠-10时,r(A)=4,故方程组仅有零解,从而α
1
,α
2
,α
3
,α
4
线性无关. 当a=-10时,r(A)=3<4,此时方程有非零解,从而α
1
,α
2
,α
3
,α
4
线性相关. 此时通解为 [*]
解析
本题考查向量组线性相关性的定义,并注意到向量组α
1
,α
2
,α
3
,α
4
线性无关,其对应的齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0仅有零解;若向量组α
1
,α
2
,α
3
,α
4
线性相关,其对应的齐次线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0有非零解.
转载请注明原文地址:https://kaotiyun.com/show/QY84777K
0
考研数学二
相关试题推荐
设f(x)和g(x)在[a,b]上连续.试证:(∫abf(x)g(x)dx)2≤∫abf2(x)dx.∫abg2(x)dx.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a);(Ⅱ)证明若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
设x1=10,xn+1=(n=1,2,…),试证数列{xn}极限存在,并求此极限.
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
已知二次型f(χ1,χ2,χ3)=χ12+4χ22+4χ32+2λχ1χ2-2χ1χ3+4χ2χ3.当λ满足什么条件时f(χ1,χ2,χ3)正定?
(04)设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
已知f(x)在x=0的某个邻域内连续,且f(0)=0,则在点x=0处f(x)().
随机试题
认为卢梭的错误在于把个人自由和人民主权混在一起的思想家是
化学物危险度评价的内容不包括
中国人民银行为社会提供低成本、大业务量的支付清算服务而建设的支付系统统称为()。
根据企业破产法律制度的规定,申请人向人民法院提出破产申请后,在一定期限内可以撤回破产申请,该期限是()。
我国旅游景区的质量等级划分为四级,最高为4A级旅游景区。()
根据现行《宪法》规定,关于公民权利和自由,下列哪一选项是正确的?()
我国现行《选举法》规定,全国人民代表大会的名额不超过()人。
某公司在转产时以极低的价格抛售库存商品。根据我国法律,该行为属于()。
InNewYork,consumershadtopayforbeveragecontainersandcouldgettheirmoneybackonreturningthem.Thekeyproblemin
Sportisnotonlyphysicallychallenging,butitcanalsobementallychallenging.Criticismfromcoaches,parents,andotherte
最新回复
(
0
)