首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2019-02-20
105
问题
设函数f(x)在[0,π]上连续,且
试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
【证法一】 令[*]则有F(0)=0,F(π)=0.又因为 [*] 所以存在ξ∈(0,π),使F(ξ)sinξ=0,因若不然,则在(0,π)内F(x)sinx恒为正或恒为负,均与[*]矛盾.但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得 F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ)和ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0. 【证法二】 由[*]知,存在ξ
1
∈(0,π),使f(ξ
1
)=0.因若不然,则在(0,π)内f(x)恒为正或恒为负,均与[*]矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由[*]推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号. 不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0,于是再由 [*] 及cosx在[0,π]上的单调性知: [*] 从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使得f(ξ
1
)=f(ξ
2
).
解析
令
则F(0)=F(π)=0.若由条件
能找到另一点ξ∈(0,π),使F(ξ)=0,再用两次罗尔定理即可.
转载请注明原文地址:https://kaotiyun.com/show/DFP4777K
0
考研数学三
相关试题推荐
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
证明:方阵A是正交阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
在曲线y=e—x(x≥0)上求一点,使过该点的切线与两坐标轴所围平面图形的面积最大,并求出最大面积.
设随机变量X的绝对值不大于1,P{X=一1)=.在事件{一1<X<1}出现的条件下,X在(—1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:(1)X的分布函数F(x)=P{X≤x};(2)X取负值的概率p.
已知问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
设随机变量X服从参数为λ>0的指数分布,且X的取值于区间[1,2]上的概率达到最大,试求λ的值.
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
随机试题
酶活性极低,但不变性的温度是酶变性且已不可逆使酶失活的温度是
I公司不断增加广告投入,提高客户服务水平属于()。I公司兼并多个品牌电脑制造厂和电脑经销商的行为属于:()。
可行性研究的核心内容是( )。
对施工过程的质量监控,必须以( )为基础。
经返修或加固处理的工程,虽局部尺寸等不符合设计要求,但仍然能满足使用要求,可()。
玉苍山又称八面山,位于浙江苍南县,系南雁荡山别支。()被称为玉苍山“三绝”。
一项工程甲、乙、丙三队合做,先由甲、乙两队合做4天后,余下由丙队单独做8天完成,若乙队单独做15天完成,丙队单独做20天完成,求甲队独做几天能完成?()
新华网消息:印度尼西亚副总统卡拉28日透露,地震和海啸造成的该国死亡人数可能高达2.5万人。此前统计的印尼死亡人数为近5000人。负责政府救援工作的卡拉当天对印尼媒体说:“目前还没有准确的统计数字,但是我估计死亡人数在2.1万到2.5万之间。”卡拉还估计,
Aslongasherparentscanremember,13-year-oldKatieHarthasbeentalkingaboutgoingtocollege.Hermother,Tally,afinanc
A.risenB.smoothC.friendlyD.exceedingE.rapidF.varyG.expensiveH.sudden
最新回复
(
0
)