首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2019-02-20
78
问题
设函数f(x)在[0,π]上连续,且
试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
【证法一】 令[*]则有F(0)=0,F(π)=0.又因为 [*] 所以存在ξ∈(0,π),使F(ξ)sinξ=0,因若不然,则在(0,π)内F(x)sinx恒为正或恒为负,均与[*]矛盾.但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得 F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ)和ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0. 【证法二】 由[*]知,存在ξ
1
∈(0,π),使f(ξ
1
)=0.因若不然,则在(0,π)内f(x)恒为正或恒为负,均与[*]矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由[*]推知,f(x)在(0,ξ
1
)内与(ξ
1
,π)内异号. 不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0,于是再由 [*] 及cosx在[0,π]上的单调性知: [*] 从而推知,在(0,π)内除ξ
1
外,f(x)=0至少还有另一实根ξ
2
,故知存在ξ
1
,ξ
2
∈(0,π),ξ
1
≠ξ
2
,使得f(ξ
1
)=f(ξ
2
).
解析
令
则F(0)=F(π)=0.若由条件
能找到另一点ξ∈(0,π),使F(ξ)=0,再用两次罗尔定理即可.
转载请注明原文地址:https://kaotiyun.com/show/DFP4777K
0
考研数学三
相关试题推荐
设A是n阶方阵,且E+A可逆,令f(A)=(E—A)(E+A)—1,证明:若A是反对称矩阵,则f(A)是正交阵.
设f(x)=,g(x)=∫0xf(t)dt,求:(1)y=g(x)的水平渐近线.(2)求该曲线y=g(x)与其所有水平渐近线,y轴所围平面图形的面积.
若曲线y=x2+ax+b和2y=一1+xy3在点(1,一1)处相切,其中a,b是常数,则().
袋中装有4枚正品均匀硬币,2枚次品均匀硬币,次品硬币的两面均印有国徽.在袋中任取一枚,将它投掷了3次,已知每次都得到国徽,求此硬币是正品的概率.
设随机变量X服从参数为λ>0的指数分布,且X的取值于区间[1,2]上的概率达到最大,试求λ的值.
设区域D由x=0,y=0,x+y=,x+y=1围成,若I1=[ln(x+y)]dxdy,I2=(x+y)3dxdy,I3=sin3(x+y)dxdy,则().
设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
随机试题
下列哪种激素的分泌不受腺垂体的控制
深度为15m的人工挖孔桩工程,()。
不符合终止经营定义的持有待售的非流动资产或处置组,其减值损失和转回金额及处置损益应当作为持续经营损益列报。()
住宅专项维修资金是指专项用于住宅()保修期满后的维修和更新、改造的资金。
【2012年烟台市市直】群体发展的最高阶段是()。
标志着我国剥削制度被消灭的历史事件是
中共十八届四中全会通过的《中共中央关于全面推进依法治国若干重大问题的决定》提出,坚持依法治国首先要坚持依宪治国,坚持依法执政首先要坚持依宪执政。中国特色社会主义政治最本质的特征、社会主义法治的最根本保证是()
=________.
微机的主机指的是_______。
SoapOperasAsoapoperaisaserialontelevisionorradio/whereeachepisodelinkstothenextepisode./Soyou’rea
最新回复
(
0
)