首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
admin
2017-07-26
58
问题
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x
3
一3相切,f(x)在(0,+∞)内与曲线y=x
3
一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
选项
答案
由y’=3x
2
,y’(1)=3,及曲线y=f(x)与y=x
3
一3相切可知,f’(1)=3,f(1)=y(1)=一2. 由曲线y=f(x)与y=x
3
一3在(0,+∞)内有相同的凹向,以及y"=6x>0,可知,f"(x)>0,x∈(0,+∞). 由台劳公式 [*] 可知,[*]f(x)=+∞,即存在M>1,当x
0
>M时,使得f(x
0
)>0. 于是,f(x)在[1,x
0
]上连续,且f(1)=一2<0,f(x
0
)>0.由零值定理,在(1,x
0
)内至少存在一点ξ,使得f(ξ)=0. 由f"(x)>0,x∈(0,+∞),可知在(0,+∞)内f’(x)单调增加. 再由f’(x)>f’(0)=0,知f(x)在(0,+∞)内单调增加,故f(x)=0在(0,+∞)内仅有一个根.
解析
由f(x)二阶可导及台劳公式可得f(x)的解析式,然后用零值定理.
转载请注明原文地址:https://kaotiyun.com/show/vrH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系:(Ⅲ)方程组有解时,求出方程组的全部解.
[*]
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设随机变量X,Y相互独立,且都服从(一1.1)上的均匀分布,令Z=max{X,Y},则P{0<Z<1}=_______
设都是正项级数,试证:(1)若收敛;(2)若收敛;(3)若都收敛;(4)若收敛。
随机试题
A.心尖区出现4/6级收缩期吹风样杂音震颤B.发病6个月后心电图ST段持续抬高C.胸骨左缘第四肋间响亮的收缩期吹风样杂音伴震颤D.发病后3天出现心包摩擦音E.交替脉心肌炎可见
胸痛不伴有呼吸困难的疾病是
在1949~1955年期间,稳定城市房地产秩序,是开展经济建设的重要组成部分。下列是稳定城市房地产秩序措施的是()。
关于商业银行个人住房贷款合作机构管理的说法,不正确的是()
西方国家较普遍采用的重组方式是()。
“重视音乐实践、增强创造意识”是音乐课程标准基本理念中两个重要的、相互联系、相互渗透的概念,只有通过良好的音乐实践,学生在感受音乐、理解音乐、鉴赏音乐、体验音乐的基础上,才能更好地去表现和创造音乐。下列哪一项不符合以上观点?()
利用旧知识接纳、吸收新知识,使新知识纳入原有认知结构的认知方式是()
语言在人类的交流中起着重要的作用。如果一种语言是完全有效的,那么其基本语音的每一种可能的组合都能够表达有独立意义和可以理解的词。但是,如果人类的听觉系统接收声音信号的功能有问题,那么并非基本语音每一种可能的组合都能够成为有独立意义和可以理解的词。如果上述
(2013年上半年)某公司刚刚宣布下个月将要裁员,并且极可能包括张工项目团队里的一些成员。团队成员议论纷纷,已无心正常工作。张工告诉团队:“让我们冷静下来,回到工作上去,也许我们下个月的绩效可以保住我们的工作”。此时,张工采取的冲突解决技术是(49)。
Theyearsbetween1870and1895broughtenormouschangestothetheaterintheUnitedStatesastheresidentcompanywasundermi
最新回复
(
0
)