首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
admin
2015-09-10
63
问题
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
选项
答案
令F(x)=f(x)一x.由原题设可知F(x)在[0,1]上连续,又F(0)=f(0)>0,F(1)=f(1)一1<0,由连续函数介值定理可知,[*]x∈(0,1),使F(x)=0,即f(x)=x. 以下证明唯一性:用反证法,假设使得f(x)=x的x不唯一,则至少应有两个,不妨设为x
1
和x
2
,(不妨设x
1
<x
2
).由罗尔定理可知[*]ξ∈(x
1
,x
2
),使F’(ξ)=0,即f’(ξ)=1,这与原题设f’(x)≠1矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/DGw4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
一个盒子内放有12个大小相同的球,其中有5个红球,4个白球,3个黑球.第一次随机地摸出2个球,观察后不放回,第二次随机地摸出3个球,记Xi表示第i次摸到的红球的数目(i=1,2);Yj表示第j次摸到的白球数,求:两次摸到的红球总数Y的分布;
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
设函数f(x),g(x)在x=x0有连续的二阶导数且f(x0)=g(x0),f’(x0)=g’(x0),f’’(x0)=g’’(x0)≠0,说明这一事实的几何意义.
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
设f(x)为二阶可导的偶函数,f(0)=1,f”(0)=2,且f"(x)在x=0的邻域内连续,则=________.
设f(x)连续可导,g(x)在x=0的邻域内连续,且g(0)=1,f’(x)=-sin2x+∫0xg(x-t)dt,则()。
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率。
已知三元方程e-xy+x+y-2z+ez=0,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程().
随机试题
基层业务人员和管理人员使用的信息是()
A.异丙托溴铵B.沙丁胺醇C.沙美特罗D.噻托溴铵E.福莫特罗短效β2受体激动剂为
固体分散体中药物的分散状态有
取得一级资质的合伙的房地产估价机构的出资额为人民币()万元以上。
对于大型复杂的产品,应用价值工程的重点应放在( )。
下列选项中属于保证担保范围的有()。
机关事业单位在参加基本养老保险的基础上,应当为其工作人员建立职业年金。单位按本单位工资总额的()缴费,个人按本人缴费工资的()缴费。
18,1/3,6,2,12,()
根据材料。回答121-125题。2005年教育行业的固定投资额为()亿元。
CharlieBellbecamechiefexecutiveofMcDonald’sinApril.Withinamonthdoctorstoldhimthathehadcolorectalcancer.After
最新回复
(
0
)