首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
设A为n阶矩阵,且A2-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
admin
2021-11-09
79
问题
设A为n阶矩阵,且A
2
-2A-8E=O.证明:r(4E-A)+r(2E+A)=n.
选项
答案
由A
2
-2A=8E=O得(4E-A)(2E+A)=O,根据矩阵秩的性质得r(4E-A)+r(2E+A)≤n.又r(4E-A)+r(2E+A)≥r[(4E-A)+(2E+A)]=r(6E)=n,所以有r(4E-A)+r(2E+A)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/yuy4777K
0
考研数学二
相关试题推荐
设A为n阶实对称可逆矩阵,f(χ1,χ2,…,χn)=χiχj.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
设区域D={(χ,y)|χ2+y2≤t2}(t>0),f(u)连续,且f(0)=0,f′(0)=2,则=_______.
设,f具有连续的二阶导数,则=.
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a﹥0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
设其中D1={(x,y){x2+y2≤R2},D2={(x,y){x2+y2≤2R2},D3={(x,y)}|x|≤R,|y|≤R},则下列关于I1,I2,I3大小关系正确的是
设求[img][/img]
设函数y=f(x)在区间[0,1]上非负、存在二阶导数,且f(0)=0,有一块质量均匀的平板D,其占据的区域是曲线y=f(x)与直线x=1以及x轴围成的平面图形.用表示平板D的质心的横坐标.求证:若f’(x)>0(0≤x≤1),则(如图1-10-4)
写出A={0,1,2}的一切子集.
随机试题
毛泽东曾对新民主主义革命总路线做了完整概括,这里所说的“完整’’是指在革命的对象中增加了()
门静脉高压症最凶险的并发症是
感冒通片临床不良反应可见
根据《污水综合排放标准》,以下允许在排污单位排放口采样的污染物是()。
工程监理单位是建筑市场的主体之一,建设工程监理是一种高智能的()。
会计职业道德警示教育是指通过对违反会计职业道德行为和违法会计行为典型案例进行讨论和剖析,从中得到警示,提高法律意识、会计职业道德观念和辨别是非能力的一种教育。()
下列选项中关于战略联盟中股权式联盟和契约式联盟中,说法正确的有()。
申请领取导游证,需()。
高度相同的一段方木和圆木,体积比为1:1,若将方木加工成尽可能大的圆木,圆木加工成尽可能大的方木,得到的圆木和方木的体积比为?
流感通常由受感染的个人传染给在他附近工作的人,因此抑制流感症状的药实际上增加流感的受感染人数,因为这种抑制流感的药使本应在家中卧床休息的人,在受感染时返回到工作场所。如果以上论述正确,下列哪项最有力地反驳了这一推断?
最新回复
(
0
)