首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元方程e-xy+x+y-2z+ez=0,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
已知三元方程e-xy+x+y-2z+ez=0,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
admin
2022-07-21
45
问题
已知三元方程e
-xy
+x+y-2z+e
z
=0,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
选项
A、只能确定一个具有连续偏导数的隐函数z=z(x,y)
B、可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
C、可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
D、可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
答案
C
解析
令F(x,y,z)=e
-xy
+x+y-2z+e
z
,则
F’
x
=-ye
-xy
+1,F’
y
=-xe
-xy
+1,F’
z
=-2+e
z
且F’
x
(0,1,1)=0,F’
y
(0,1,1)=1,F’
z
(0,1,1)=e-2,由此方程e
-xy
+x+y-2z+e
z
=0在点(0,1,1)的一个邻域内可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).
转载请注明原文地址:https://kaotiyun.com/show/YLf4777K
0
考研数学二
相关试题推荐
函数f(x)=在x=π处的()
二次型χTAχ正定的充要条件是
曲线y=arctan渐近线的条数是
设偶函数f(χ)有连续的二阶导数,并且f〞(0)≠0,则χ=0().
设f(χ)是二阶常系数非齐次线性微分方程y〞+Py′+qy=sin2χ+2eχ的满足初始条件f(0)=f′(0)=0的特解,则当χ→0时,().
设曲线的参数方程为的曲线段的弧长s=________。
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=_______
设y=y(x)是由方程2y3一2y2+2xy一x2=1确定的,则y=y(x)的极值点是___________。
设f(x)在区间[1,+∞)上单调减少且非负的连续函数一∫0nf(x)dx(n=1,2,…).(1)证明:(2)证明:反常积分∫1+∞f(x)dx与无穷级数同敛散.
设Dk是圆域D={(x,y)|x2+y2≤1}在第k象限的部分,记Ik=(y-x)dxdy(k=1,2,3,4),则().
随机试题
随着新税收改革法令的通过,低收入纳税人每年将平均减少100元到300元的财税负担。所以,税收改革有益于低收入纳税人。以下哪项如果为真,最严重地动摇了上述结论?
下列划横线的句子翻译错误的是【】
某实验室收到一个血标本,经离心后上层血清呈云雾状浑浊,其原因是
对病毒性肝炎的临床分型最有意义的依据是
炎性充血主要是指
作为债券结算的主要结算方式,全额结算的劣势是()。
下列关于合同成立条件的错误表述是()。
一个男人想结婚,但又怕结婚后要承担相应的责任义务。这时他面临的心理冲突是()。
阅读下文。回答106—110题。德国地理学家李希霍芬,首次提出“丝绸之路”这个概念,因为他通过考察,认为当时路上运输的主要货物是丝绸。尽管西域考古挖掘出一些丝织品,但这只说明“丝绸之路”确实运送过丝绸,而不能说明运送的主要物品是丝绸。今天“
《共产党宣言》发表以来160年的实践,特别是中国共产党人创造性地领导中国革命、建设和改革的成功实践告诉我们,马克思主义之所以能够成功的条件是
最新回复
(
0
)