首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,ξ1,…,ξn-r线性无关;
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明: η*,ξ1,…,ξn-r线性无关;
admin
2018-02-07
61
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,ξ
1
,…,ξ
n-r
线性无关;
选项
答案
假设η
*
,ξ
1
,…,ξ
n-r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n-r
使得 c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n-r
ξ
n-r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n
Aξ
n-r
=c
0
b, 其中b≠0,则c
0
=0,于是(1)式变为 c
1
ξ
1
+…+c
n-r
ξ
n-r
=0, ξ
1
,…,ξ
n-r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n-r
线性无关,因此c
1
=c
2
=…=c
n-r
=0,与假设矛盾。 所以η
*
,ξ
1
,…,ξ
n-r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/DHk4777K
0
考研数学二
相关试题推荐
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
证明函数y=sinx-x单调减少.
若f(x)是连续函数,证明
已知f(x)是微分方程=_______.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设已知线性方程组Ax=6存在2个不同的解。求方程组Ax=b的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
随机试题
"Cool"isawordwithmanymeanings.Itstraditionalmeaningisusedto【C1】________atemperaturethatisfairlycool.Asthewo
对于债权债务的清查,一般采用()
老年人服用地高辛临床应引起重视是因为
已知f(x)是二阶可导的函数,y=e2f(x),则为()。
工程造价咨询企业跨省、自治区、直辖市承接业务不备案的,由县级以上地方人民政府建设主管部门给予警告,责令限期改正;逾期未改正的,可处以()的罚款。
下列各项中,不属于会计科目设置内容的是()。
甲公司2014年度发生的交易或事项如下:(1)甲公司以账面价值为20万元、市场价格为25万元的一项无形资产交付乙公司,抵偿所欠乙公司款项30万元;(2)甲公司领用账面价值为30万元、市场价格为32万元的一批外购原材料,投入办公楼在建工程项目;(3)收
甲公司2011年度至2013年度对乙公司债券投资业务的相关资料如下:(1)2011年1月1日,甲公司以银行存款900万元购入乙公司当日发行的5年期公司债券,作为持有至到期投资核算,该债券面值总额为1000万元,票面年利率为5%,每年年末支付利息,到期一次
下列各项可采用完工百分比法确认收入的是()。
广东在全国的GDP单位能耗最低,请你分析低的原因。
最新回复
(
0
)