首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1,y2是一阶线性非齐次微分方程y'+p(x)y=g(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( )
设y1,y2是一阶线性非齐次微分方程y'+p(x)y=g(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( )
admin
2019-04-09
58
问题
设y
1
,y
2
是一阶线性非齐次微分方程y'+p(x)y=g(x)的两个特解,若常数λ,μ使λy
1
+μy
2
是该方程的解,λy
1
一μy
2
是该方程对应的齐次方程的解,则( )
选项
A、
B、
C、
D、
答案
A
解析
由已知条件可得
由λy
1
+μy
2
仍是该方程的解,得(λy'
1
+μy'
2
)+p(x)(λy
1
+μy
2
)=(λ+μ)g(x),
则λ+μ=1;
由λy
1
一μy
2
是所对应齐次方程的解,得(λy'
1
一μy'
2
)+p(x)(λy
1
一μy
2
)=(λ一μ)q(x),
那么λ一μ=0。
综上所述A=μ=
,故选A。
转载请注明原文地址:https://kaotiyun.com/show/DOP4777K
0
考研数学三
相关试题推荐
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
设xy=xf(z)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是x,y的函数.证明:[x-g(z)]=[y-f(z)].
求幂级数的收敛域.
微分方程2y"=3y2满足初始条件y(-2)=1,y’(-2)=1的特解为______.
设f(x)在[a,b]上二阶可导,且f’’(x)>0,证明:f(x)在(a,b)内为凹函数.
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是取自总体X的简单随机样本,统计量(1<i<10)服从F分布,则i等于()
袋中有1个红球,2个黑球和3个白球,现有放回地从袋中取两次,每次取一球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有P{X≥s+t|X≥s}=P{X≥t}(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
设A是n阶正定矩阵,B是n阶反对称矩阵,则矩阵A—B2是①对称阵,②反对称阵,③可逆阵,④正定阵,四个结论中,正确的个数是()
连续函数f(x)满足则f(x)=__________.
随机试题
《戈丹》的作者是【】
简述城市法的基本特点。
室间隔缺损和动脉导管未闭患儿,出现声音嘶哑,最常见的原因是( )。
A.白细胞管型B.蜡样管型C.脂昉管型D.红细胞管型E.颗粒管型慢性肾衰竭时常可出现的是()
根据《民事诉讼法》和相关司法解释,关丁中级法院,下列哪一表述是正确的?(2011年·卷三·39题)
关于网络计划的说法,正确的是()。
公安后勤保障工作的主要内容有()。
下列属于违反治安管理行为特征的是()。
根据以下资料,回答问题。2011年上半年,全国电信业务总量累计完成5681.1亿元,比上年同期增长15.7%;电信主营业务收入累计完成4740.7亿元,比上年同期增长10.1%。2011年上半年,移动通信收入累计比上年同期增长14.0
下列关于汉字信息处理的叙述中,不正确的是()。
最新回复
(
0
)