首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上二阶可导,且f”(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设函数f(x)在(0,+∞)上二阶可导,且f”(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
admin
2016-06-27
97
问题
设函数f(x)在(0,+∞)上二阶可导,且f”(x)>0,记u
n
=f(n),n=1,2,…,又u
1
<u
2
,证明
选项
答案
对函数f(x)分别在区间[k,k+1](k=1,2,…,n,…),上使用拉格朗日中值定理 u
2
一u
1
=f(2)一f(1)=f’(ξ
1
)>0,1<ξ
1
<2, …… u
n-1
一u
n-2
=f(n一1)一f(n-2)=f’(ξ
n-2
),n一2<ξ
n-2
<n一1, u
n
一u
n-1
=f(n)一f(n一1)=f’(ξ
n-1
),n—1<ξ
n-1
<n. 因f”(x)>0,故f’(x)严格单调增加,即有 f’(ξ
n-1
)>f’(ξ
n-2
)>…>f’(ξ
2
)>f’(ξ
1
)=u
2
一u
1
, 则 u
n
=(u
n
一u
n-1
) +(u
n-1
一u
n-2
)+…+(u
2
一u
1
) +u
1
=f’(ξ
n-1
)+f’(ξ
n-2
)+…+f’(ξ
1
)+u
1
>f’(ξ
1
)+f’(ξ
1
)+…+f’(ξ
1
)+u
1
=(n一1)(u
2
一u
1
)+u
1
, 于是有[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/DUT4777K
0
考研数学三
相关试题推荐
以第一次国共合作为基础的革命统一战线正式形成的标志是()。
材料1 习近平总书记指出,中医药学是中国古代科学的瑰宝,也是打开中华文明宝库的钥匙。正视中医药这一祖先留给我们的宝贵财富,把它继承好、发展好、利用好,是建设健康中国的题中之义,也是对优秀文明的重要担当。 材料2 “中医药全面介入、深度参与新冠肺
推动人的全面发展是马克思主义的本质要求。《共产党宣言》指出:“代替那存在着阶级和阶级对立的资产阶级旧社会的,将是这样一个联合体,在那里,每个人的自由发展是一切人的自由发展的条件。”这段话所谓人的自由发展是()。
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
求下列初值问题的解:(1)y〞-3yˊ+2y-1,y|x=0=2,yˊ|x=0=2;(2)y〞+y+sin2x=0,y|x=π=1,yˊ|x=π=1;(3)y〞-yˊ=2(1-x),y|x=0=1,yˊ|x=0=1;(4)y〞+y=ex+cosx,
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+n(x一x0)+b(y—y0)+。(p)(p→o),其中a,b为常数,,则
随机试题
系统
A.膈神经麻痹B.气胸C.二者均有D.二者均无(2003年第128题)臂丛神经阻滞锁骨上径路,可能发生的并发症有
甲花4万元收买被拐卖妇女周某做智障儿子的妻子,周某不从,伺机逃走。甲为避免人财两空,以3万元将周某出卖。(事实一)乙收买周某,欲与周某成为夫妻,周某不从,乙多次暴力强行与周某发生性关系。(事实二)不久,周某谎称怀孕要去医院检查,乙信以为
下列风险中,属于业主或投资商风险的有()。
民主革命时期,著名的()清算了王明“左”倾教条主义在党内的统治,确立了毛泽东同志在党和红军中的领导地位。
中国古代著名的三大特产是()。
10ln3.
关于下列应用程序的描述中,哪个说法是正确的______。
考生文件夹下存在两个Python源文件PY30H.Py和PY301—2.Py,分别对应两个问题,请按照文件内说明修改代码,实现以下功能:《傲慢与偏见》是史上最震撼人心的“世界文学十部最佳小说之一”。第一章的内容由考生文件夹下文件arrogant.
Thefollowingareallcorrectresponsesto"Howdoyoulikethestory?"EXCEPT
最新回复
(
0
)