首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y"-7y’+12y=x满足初始条件的特解; (Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)y"’+y"+y’+y=0的通解.
解下列微分方程: (Ⅰ)y"-7y’+12y=x满足初始条件的特解; (Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)y"’+y"+y’+y=0的通解.
admin
2017-07-10
80
问题
解下列微分方程:
(Ⅰ)y"-7y’+12y=x满足初始条件
的特解;
(Ⅱ)y"+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)y"’+y"+y’+y=0的通解.
选项
答案
(Ⅰ)相应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根:λ
1
=3,λ
2
=4,所以,其通解为 [*]=C
1
e
3x
+C
2
e
4x
. 由于0不是特征根,所以非齐次方程的特解应具有形式y
*
(x)=Ax+B.代入方程,可得[*],所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得[*] 因此所求的特解为y(x)=[*] (Ⅱ)由于相应齐次方程的特征根为±ai,所以其通解为[*]=C
1
cosax+C
2
sinax.求原非齐次方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程,则得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程,则得 A=0. B=[*] 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Dqt4777K
0
考研数学二
相关试题推荐
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
求下列极限:
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
生产某种产品必须投入两种要素,x1与x2分别为两要素的投入量,Q为产出量;若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1.假设两要素的价格分别为声p1和p2,试问当产出量为12时,两要素各投入多少可以使得投入总费用最小?
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
若f(x)是连续函数,证明
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
比较的大小,说明理由。
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
求极限.
随机试题
WhatisrequiredinmanydifferentsituationsinAmericanculture?Anexpressionof_________________________________________
HSE管理小组职责是负责审定(),作出HSE重大决策。
宜用灸法的有()。
肝气乘脾型泄泻选用肾阳虚衰型泄泻选用
现金流量与利润的主要区别是,前者的计算以现金制为基础,后者的计算以应计制为基础。()
下列关于应付账款的表述正确的有()。
有关老年期记忆力下降的机制的解释包括()。
柜房、飞钱
A、 B、 C、 A
CharacteristicsqfAmericanCultureI.PunctualityA.Goingtothetheater:be【T1】______twentyminutesprior【T1】______B.
最新回复
(
0
)