首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明: 其中Er是r阶单位阵.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明: 其中Er是r阶单位阵.
admin
2016-07-22
25
问题
设A是n阶矩阵,满足A
2
=A,且r(A)=r(0<r≤n).证明:
其中E
r
是r阶单位阵.
选项
答案
方法一 A
2
=A,A的特征值的取值为1,0,由A-A
2
-A(E-A)=O知 r(A)+r(E-A)≤n, r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故r(A)+r(E-A)=n,r(A)=r,从而r(E-A)=n-r 对λ=1,(E-A)X=0,因r(E-A)=n-r,故有r个线性无关特征向量,设为ξ
1
,ξ
2
,…,ξ
r
; 对λ=0,(0E-A)X=0,即AX=0,因r(A)=r,有n-r个线性无关特征向量,设为ξ
r+1
,ξ
r+2
,…,ξ
n
. 故存在可逆阵P=[ξ
1
,ξ
2
,…,ξ
n
],使得P
-1
AP=[*] 方法二 r(A)=r,A有r个列向量线性无关,设为前r列,将A按列分块,有 A
2
=A[ξ
1
,ξ
2
,…,ξ
n
]=[ξ
1
,ξ
2
,…,ξ
n
]=A, 即Aξ
i
=ξ
i
,i=1,2,…,r,故λ=1至少是r重根,又r(A)=r,AX=0有n-r个线性无关解,设为η
r+1
,η
r+2
,…,η
n
,即Aη
j
=0,j=r+1,…,n.故λ=0是A的特征值,η
j
,j=r+1,…,n是对应的特征向量.令P=[ξ
1
,ξ
2
,…,ξ
r
,η
r+1
,…,η
n
],有P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Dqw4777K
0
考研数学一
相关试题推荐
若当x→时,π-3arccosx~a,则a=__________,b=__________.
当x→0时,3x-4sinx+sinxcosx与xn为同阶无穷小,则n=__________.
已知A=有三个线性无关的特征向量,则a=__________.
若矩阵A=,B是三阶非零矩阵,满足AB=O,则t=__________.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1,-2A2,2A2+3A3,-3A3+2A1|=__________.
计算,其中Ω是由柱面,平面x+z=π/2,x=0,与y=0围成.
微分方程y”-3y”-4y’=0的通解为________.
设,求函数的表达式.
设g(x)二阶可导,且f(x)=(Ⅰ)求常数a,使得f(x)在x=0处连续;(Ⅱ)求f’(x),并讨论f’(x)在x=0处的连续性.
设f(x)=3u(x)一2v(x),g(x)=2u(x)+3υ(x),并设都不存在.下列论断正确的是()
随机试题
血病之阴虚火旺者治疗宜选用血病之寒凝经脉证治疗宜选用
患儿,男,4岁。以病毒性脑膜炎入院,经积极治疗,除右侧肢体仍活动不利,其他临床症状明显好转,家长要求回家休养。护士为其进行出院指导,不妥的是
在综合布线工程测试中,()近端串音衰减值/衰减值,表示串音衰减比。
当某工程网络计划的计算工期等于计划工期时,该网络计划中的关键工作是指( )的工作。
财务会计报告由()组成。
下列各项中,()是支付结算的法律依据。
2019年5月,陈某从某汽车销售公司(增值税一般纳税人)购买轿车一辆供自己使用,支付含增值税价款230000元,另支付购置工具件和零配件含税价款1300元,车辆装饰费6000元,支付的所有款项均由销售公司开具统一发票。则陈某应纳车辆购置税()元。
上市商业银行信息披露应与银行的经营特点相适应,其原则不包括()。
小强2岁时由于父母忙于工作被送到乡下外婆家抚养,外公外婆对其十分疼爱,百般呵护。6岁时,小强回到父母身边并进入小学。这时他性格十分内向,爱哭,害怕与陌生人交往。按照埃里克森的理论,小强心理问题形成的原因是没有完成()的矛盾冲突。
以下程序用来统计文件中字符的个数(函数feof用以检查文件是否结束,结束时返回非零)#include<stdio.h>main(){FILE*fp;longnum=0;fp=fopen("fname.dat","r");while(__
最新回复
(
0
)