首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明: 其中Er是r阶单位阵.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明: 其中Er是r阶单位阵.
admin
2016-07-22
36
问题
设A是n阶矩阵,满足A
2
=A,且r(A)=r(0<r≤n).证明:
其中E
r
是r阶单位阵.
选项
答案
方法一 A
2
=A,A的特征值的取值为1,0,由A-A
2
-A(E-A)=O知 r(A)+r(E-A)≤n, r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故r(A)+r(E-A)=n,r(A)=r,从而r(E-A)=n-r 对λ=1,(E-A)X=0,因r(E-A)=n-r,故有r个线性无关特征向量,设为ξ
1
,ξ
2
,…,ξ
r
; 对λ=0,(0E-A)X=0,即AX=0,因r(A)=r,有n-r个线性无关特征向量,设为ξ
r+1
,ξ
r+2
,…,ξ
n
. 故存在可逆阵P=[ξ
1
,ξ
2
,…,ξ
n
],使得P
-1
AP=[*] 方法二 r(A)=r,A有r个列向量线性无关,设为前r列,将A按列分块,有 A
2
=A[ξ
1
,ξ
2
,…,ξ
n
]=[ξ
1
,ξ
2
,…,ξ
n
]=A, 即Aξ
i
=ξ
i
,i=1,2,…,r,故λ=1至少是r重根,又r(A)=r,AX=0有n-r个线性无关解,设为η
r+1
,η
r+2
,…,η
n
,即Aη
j
=0,j=r+1,…,n.故λ=0是A的特征值,η
j
,j=r+1,…,n是对应的特征向量.令P=[ξ
1
,ξ
2
,…,ξ
r
,η
r+1
,…,η
n
],有P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Dqw4777K
0
考研数学一
相关试题推荐
下列为奇函数的是().
求
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a=__________.
求微分方程-y=|x|的通解.
如果|a|=2,|b|=5,且|a+b|=6,则|a-b|的值是().
多项式f(x)=中x3项的系数为________.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
由题设,根据行列式的定义和数学期望的性质,有[*]
随机试题
不同避免地adv.i______
将用汇编语言编写的源程序,生成机器语言的目标程序的过程叫________。
环磷酰胺属于哪一类抗肿瘤药物()。
2岁小儿体重约等于其出生体重的
甲公司指派员工唐某从事新型灯具的研制开发,唐某于2004年3月完成了一种新型灯具的开发。甲公司对该灯具的技术采取了保密措施,并于2005年5月19日申请发明专利。2006年12月1日,国家专利局公布该发明专利申请,并于2007年8月9日授予甲公司专利权。此
建设工程施工招标文件,既是承包商编制投标文件的依据,也是与将来中标的承包商()。
关于分包人与发包人关系的说法,正确的是()。
在债务重组的会计处理中,以下说法正确的有()。
下列不属于股票回购缺点的是( )。
几位旅游者在浏览乾陵时,纷纷爬到石狮的背上照像,导游人员见了连忙上前提醒他们:“大家不要欺负这头石狮,否则它会发怒的。”导游人员此时使用的语言方式是()。
最新回复
(
0
)