首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
admin
2016-09-19
47
问题
已知3维向量组α
1
,α
2
,α
3
线性无关,则向量组α
1
-α
2
,α
2
-kα
3
,α
3
-α
1
也线性无关的充要条件是k_________.
选项
答案
≠1
解析
[α
1
-α
2
,α
2
-kα
3
,α
3
-α
1
]=[α
1
,α
2
,α
3
]
α
1
,α
2
,α
3
线性无关,故α
1
-α
2
,α
2
-kα
3
,α
3
-α
1
线性无关的充要条件是
=1-k≠0,k≠1.
转载请注明原文地址:https://kaotiyun.com/show/DtT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
证明[*]
将函数分别展开成正弦级数和余弦级数.
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
根据题意可知方程组(Ⅱ)中方程组个数<未知数个数,从而(Ⅱ)必有无穷[*]
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β可由α1,α2,α3唯一地线性表示,并求出表示式;
随机试题
在软件工程中,软件测试的目标是()
试述合同变更的效力。
信息按照不同的划分方法可以分为哪些种类?
糖尿病微血管病变的病理特点是
高血压危象的发生机制可能为
关闭显示器的电源,将使正在运行的程序立即停止运行。 ( )
简述湖北旅游资源的总体特色。
生活于另一种生物体内或体表并从其体内获得营养的生物为寄生生物。关于寄生生物。下列说法不正确的是:
下面程序的输出是______。main(){intx=3,y=6,a=0;,while(x++!=(y=1)){a+=1;if(y<x)break;}printf("x=%d,y=%d,a=%d\n,
在软件生命周期中,能准确地确定软件系统必须做什么和必须具备哪些功能的阶段是()。
最新回复
(
0
)