首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程 组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程 组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
admin
2018-01-23
62
问题
设齐次线性方程组
其中ab≠0,n≥2.讨论a,b取何值时,方程
组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
选项
答案
D=[*]=[a+(n-1)b](a-b)
n-1
. (1)当a≠b,a≠(1-n)b时,方程组只有零解; (2)当a=b时,方程组的同解方程组为x
1
+x
2
+…+x
n
=0,其通解为 X=k
1
(-1,1,0,…,0)
T
+k
2
(-1,0,1,…,0)
T
+…+k
n-1
(-1,0,…,0,1)
T
(k
1
,k
2
,…,k
n-1
为任意常数); (3)令A=[*]当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1)
T
为方程 组的一个解,故方程组的通解为k(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/E8X4777K
0
考研数学三
相关试题推荐
已知A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E—A|中;命题成立的有().
设(i=1,2,3),其中D1={(x,y)|0≤x≤1,0≤y≤1},D2={(x,y)|0≤x≤1,0≤y≤},D3={(x,y)|0≤x≤1,x2≤y≤1},则_________.
设随机变量X与Y独立同分布,方差存在且不为零,记U=X—Y,V=X+Y,则U与V必然()
设总体X的密度函数为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量。
试证明函数在区间(0,+∞)内单调增加.
设总体X的密度函数为f(x)=其中θ>-1是未知参数,X1,X2,…,Xn是来自总体X的简单随机样本.求θ的矩估计量;
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时行f’(x)<0,f”(x)>0,则当x>0时,有()
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的,求全部融化需要的时间.
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,与△x比较是()无穷小(Ⅱ)设函
设D=求Ak1+Ak2+…+Akn.
随机试题
计算机的指令系统是计算机()的接口。
β肾上腺素受体是典型的G蛋白耦联受体,它的信号传递途径中有许多重要的信号蛋白,其中最重要的蛋白激酶是
人华支睾吸虫病的主要感染方式是
脱疽初起,患者足背动脉、胫后动脉的脉象多表现为()
地下室半地下室出入口的建筑面积()。
箱涵顶进挖运土方时,挖土的进尺可根据土质确定,一般宜为()。
为期货公司提供中间介绍业务的机构的期货从业人员不得有下列()行为。
在Excel中,通过格式工具栏可以对工作表中的单元格内容进行()。
下列各句中没有语病且句意明确的一句是:
Whereisthepie-eatingcontestusuallyheld?
最新回复
(
0
)