首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-26
55
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n一r(A)=n一r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/EFu4777K
0
考研数学一
相关试题推荐
[*]
1,5,6
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
求下列有理函数不定积分:
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>0)下的最大值是
随机试题
在Excel2010中,用户对工作表________。
HIV入侵T细胞的主要门户是
根据经济形势需要,政府可采取不同取向的财政政策,具体包括()。
某施工单位承接了一段长25km的双向两车道新建二级公路路基、路面施工,路基宽8.5m,路面宽7.0m,路面结构设计如下:施工单位采用干法施工填隙碎石底基层,在准备好下承层后,按下列工艺流程组织施工:施工放样→摊铺粗碎石→初压→撒布填隙料→复压→
1.背景由某企业承建某多功能现代化商务综合大厦,地上46层,地下3层,全现浇钢筋混凝土框架一剪力墙结构,主体结构采用泵送混凝土等新技术。建筑物周边都十分接近规划用地红线,周边建筑及地下管线对因工程基坑开挖引起地层变形移动影响十分敏感,且基坑北面邻近地铁。
大宗散装商品、易腐烂变质商品,以及卸货时发现残损或者数量、重量短缺的商品,必须在卸货口岸或者( )进行检验。
学生参加学校的期末考试时,大多以及格为过关标准,所以很多学生抱着“六十分万岁”的思想去备考。这体现的评价是()。
当今世界上存在两种不同的社会制度:社会主义社会和资本主义社会。区分这两种不同社会制度的客观依据是()。
下列选项中,属于债权具有的功能的是
ScientificexpertssaytheHornofAfricawill______.
最新回复
(
0
)