首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.
已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.
admin
2018-08-12
38
问题
已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.
选项
答案
设三角形的三边长为a,b,c,并设以AC边为旋转轴(见图8.1),AC上的高为h,则旋转所成立体的体积为 [*] 又设三角形的面积为S,于是有 [*] 问题化成求y(a,b,c)在条件a+b+c-2p=0下的最大值点,等价于求V
0
(a,b,c)=[*](p-a)(p-b)(p-c)=ln(p-a)+ln(p-b)+ln(p-c)-lnb在条件a+b+c-2p=0下的最大值点. 用拉格朗日乘子法.令F(a,b,c,λ)=V
0
(a,b,c)+λ(a+b+c-2p),求解方程组 [*] 比较①,③得a=c,再由④得 6=2(p-a). ⑤ 比较①,②得 b(p-b)=(p-a)p. ⑥ 由⑤,⑥解出[*] 由实际问题知,最大体积一定存在,而以上解又是方程组的唯一解.因而也是条件最大值点.所以当三角形的边长分别为[*]时,绕边长为[*]的边旋转时.所得立体体积最大.
解析
转载请注明原文地址:https://kaotiyun.com/show/EGj4777K
0
考研数学二
相关试题推荐
设的特征向量,则a=_______,b=_______.
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
设f(x)在[0,2]上连续,在(0,2)内可导,f(0)=f(2)=0,且|f’(x)|≤2.证明:|∫02f(x)dx|≤2.
y=ex在x=0处的曲率半径为R=_______.
设矩阵A满足(2E-C-1B)AT=C-1,且,求矩阵A
设方阵A1与B1合同,A2与B2合同,证明:合同
顶角为60°,底圆半径为a的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
计算其中D是由圆周x2+y2=4,x2+y2=1及直线y=0,y=x所围的位于第一象限的闭区域.
设ψ(x)在[a,b]上连续,且ψ(x)>0,则函数y=φ(x)=∫ab|x一t|ψ(t)dt的图形()
设则f(x)的极值为_________,f(x)的拐点坐标为_________.
随机试题
关于Western印迹,不正确的叙述是
晚期梅毒一般不用:
下列哪一项不是瘀血阻络胁痛的特点
在行政诉讼过程中,下列证据不能作为定案依据的是:森林大酒店在延长试用期期间降低小毛工资的做法是否正确?
根据我国《民事诉讼法》的规定,因合同的纠纷提起的诉讼,有权管辖的人民法院是()。
“数以亿计的人可在自家屋顶、田间建立一个小型发电厂,只要它覆盖着太阳能电池板,而且通过互联网和电网与世界连接相互交易”,这是“互联网+能源”的一个远景和行动。其重大意义在于()。①每个人都可以是电力消费者也可以是生产者②可以极大地促
如果所有的鸟都会飞,并且企鹅是鸟,那么企鹅会飞。从这个前提出发,需要加上下列哪一项前提,才能逻辑地推出“有些鸟不会飞”的结论?
以下关于我国各少数民族的说法,正确的是()。
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
常规密钥密码体制又称为(1),它是指(2)的密码体制。属于常规密钥密码体制的密码是(3)。采用密钥流序列作为密钥序列的属于(4)。国际数据加密算法IDEA属于(5)。
最新回复
(
0
)