首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
admin
2019-12-26
25
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=O.已知A的秩r(A)=2.
当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
选项
答案
【解法1】矩阵A+kE仍为实对称矩阵.由上题知,A+kE的全部特征值为 -2+k,-2+k,k, 于是,当k>2时矩阵A+kE的特征值均大于零.因此,当k>2时,矩阵A+kE为正定矩阵. 【解法2】 实对称矩阵必可对角化,故存在可逆矩阵P,使得 P
-1
AP=Λ.A=PΛP
-1
. 于是 A+kE=PΛP
-1
+kPP
-1
=P(Λ+kE)P
-1
. 所以 A+kE~Λ+kE. 而 [*] 若Λ+kE为正定矩阵,只需其顺序主子式大于0,即k需满足 k-2>0,(k-2)
2
>0,(k-2)
2
k>0, 因此,当k>2时,矩阵Λ+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/EJD4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的秩为n一2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的特解为________。
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩为_______.
设a>0,x1>0,且定义xn+1=存在并求其值.
已知幂级数anxn在x=1处条件收敛,则幂级数an(x一1)n的收敛半径为________。
已知正、负惯性指数均为1的二次型f=xTAx通过合同变换x=Py化为f=yTBy,其中B=则a=________。
已知一个长办形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_________.
设两两独立的三事件A,B,C满足条件:则P(A)=________。
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为________。
随机试题
下列关于其他行使行政职权的组织的说法中错误的有()。
A.急性早幼粒细胞性白血病B.慢性淋巴细胞性白血病C.急性单核细胞性白血病D.急性淋巴细胞性白血病E.慢性粒细胞性白血病易侵犯中枢神经系统
A.硝酸甘油B.硝酸异山梨醇酯C.单硝酸异山梨醇酯D.戊四硝酯E.双嘧达莫含有三个硝基的是
公有住房出售时,售房单位代为收取的维修基金属全体业主共同所有,计入住宅销售收入。()
两瓶不同种类的理想气体,其分子平均平动动能相等,但它们单位体积内的分子数不相同,则这两种气体的温度和压强关系为()。
某项目建设期4年,第1年借款2000万元,第2年借款3000万元,第3年借款3000万元,第4年借款2000万元,借款分年度均衡发放,年利率为7%,则建设期第4年的借款利息为()万元。
西周列鼎制度规定:天子用()。
《中华人民共和国教师法》第十条规定,国家扶持和发展()
数据仓库是面向主题的、_______的、非易失的、随时间变化的数据集合,用来支持管理人员的决策。
关于电子邮件,下列说法错误的是()。
最新回复
(
0
)