首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
admin
2019-12-26
76
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=O.已知A的秩r(A)=2.
当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
选项
答案
【解法1】矩阵A+kE仍为实对称矩阵.由上题知,A+kE的全部特征值为 -2+k,-2+k,k, 于是,当k>2时矩阵A+kE的特征值均大于零.因此,当k>2时,矩阵A+kE为正定矩阵. 【解法2】 实对称矩阵必可对角化,故存在可逆矩阵P,使得 P
-1
AP=Λ.A=PΛP
-1
. 于是 A+kE=PΛP
-1
+kPP
-1
=P(Λ+kE)P
-1
. 所以 A+kE~Λ+kE. 而 [*] 若Λ+kE为正定矩阵,只需其顺序主子式大于0,即k需满足 k-2>0,(k-2)
2
>0,(k-2)
2
k>0, 因此,当k>2时,矩阵Λ+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/EJD4777K
0
考研数学三
相关试题推荐
设n阶矩阵A=,则|A|=_______.
微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的特解为________。
设有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P一1AP为对角矩阵.
已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,7),则该向量组的秩为_______.
已知一个长办形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_________.
设两两独立的三事件A,B,C满足条件:则P(A)=________。
二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为____________.
求方程组的通解.
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=__________.
二次型f(x1,x2,x3)=(x1+2x2+a3x3)(x1+5x2+b3x3)的合同规范形为________。
随机试题
患者,女,34岁。皮肤反复出血半年。检查:血红蛋白90g/L,血白细胞5.0×109/L,血小板46×109/L,骨髓增生活跃,颗粒型巨核细胞增多。应首先考虑的是
以下哪种细胞因子是Th2细胞产生的()
A、突发热B、偏头痛C、紧张性头痛D、三叉神经痛E、以上均不是发热持续1~3d的是
关于血沉过程的叙述,错误的是()。
关于妨害社会管理秩序罪,下列说法错误的有:
甲公司计划本年只生产一种产品,有关资料如下:(1)每季的产品销售货款有60%于当期收到现金,有40%于下个季度收到现金,预计第一季度末的应收账款为3800万元,第二季度的销售收入为8000万元,第三季度的销售收入为12000万元。产品售价为1
宪法的适用通常指国家()贯彻落实宪法的活动。
Thesteadilyrisingcostoflaboronthewaterfronthasgreatlyincreasedthecostofshippingcargobywater.
A—midfieldB—backfieldC—cheerteamD—shootE—cornerhallF—kick-offG—stoppingH—pas
WindEnergyWindenergydevelopmenthasbeenthrivingbothintheUnitedStatesandaroundtheworld.Thisreflectsnotonly
最新回复
(
0
)