首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A= (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵.
设n阶矩阵A= (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2021-10-08
36
问题
设n阶矩阵A=
(Ⅰ)求A的特征值和特征向量;
(Ⅱ)求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设,先由特征值多项式|A-λE|=0求A的特征值,即 [*] =[1-λ+(n-1)b](1-λ-b)
n-1
, 因此A的特征值为λ
1
=1+(n-1)b,λ
2
=λ
3
=…=λ
n
=1-b. 当b≠0时,对应于λ
1
=1+(n-1)b, [*] 不难求出ξ
1
=[*]是(A-λ
1
E)x=0的基础解系,从而属于λ
1
的特征向量为Cξ
n
= [*],其中C为任意非0常数。对应于λ
2
=λ
3
=…=λ
n
=1-b, A-(1-b)E=[*] 易得出基础解系为ξ
2
=[*] 从而特征向量为C
2
ξ
2
+C
3
ξ
3
+…+C
n
ξ
n
,其中C
2
,C
3
,…,C
n
是不全为0的常数. 当b=0时,A=[*]=E,从而A-E=0,任意非零向量皆为其特征向量. (Ⅱ)由前述已知,当b≠0,A有n个线性无关的特征向量,令P=(ξ
1
,ξ
2
,ξ
3
,…,ξ
n
), 则P
-1
AP=[*] 而当b=0时,A=E,任取P为可逆矩阵,都有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/EJy4777K
0
考研数学二
相关试题推荐
设f(χ)=,则χ=0是f(χ)的().
设P=,Q为三阶非零矩阵,且PQ=O,则().
设A为m×n阶矩阵,C为,2阶矩阵,B=AC,且r(A)=r,r(B)=r1,则().
设A为三阶矩阵Aαi=iαi(i=1,2,3),α1=,α2=,α3=,求A.
设u=f(x+y,xz)有二阶连续的偏导数,则=().
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
由曲线y=(0≤x≤π)与x轴围成的图形绕x轴旋转所成旋转体的体积为()
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于()
设矩阵A=,且∣A∣=一l,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T.求a,b,c和λ0的值.
设F(u,v)具有一阶连续偏导数,且z=z(x,y)由方程F(,yz)=0所确定.又设题中出现的分母不为零,则=()
随机试题
CT扫描发现左心后区类圆形“肿块”影,内含少量气体,与横膈关系密切。下述疾病中可能性最大的是
A.酸败B.破裂C.分层D.转相E.絮凝乳滴聚集成团但保持乳滴的完整分散体而不呈现合并现象
某投保人缴净保费P=1800元,附加费比例k=10%,则该投保人缴纳的营业保费为( )元。
某企业取得3年期银行存款1000万元,年利率8%,半年付息一次,到期一次还本,筹资费用率为l%,企业所得税率为25%。该企业的银行借款资本成本为()。
德国古典哲学是马克思主义哲学的直接理论来源。()
阅读《一个小官吏之死》这篇小说的片断,完成下列题。一个极好的傍晚,一个同样极好的名叫伊万.德米特里奇.切尔维亚科夫的庶务官坐在剧院大厅第二排的围椅上,架上望远镜观看《哥纳维勒的钟》。他凝神注目,飘然欲仙。突然……在小说里经常遇到“突然”这两个字。
王珏、柳枚、江倩三人分别是三个孩子的母亲,她们带着自己的孩子一同去郊游。王珏对自己的孩子说:“真有趣,你们这三个孩子,也是一个姓王,一个姓柳,一个姓江,但是你们都不和自己的母亲同姓。”另一个姓江的孩子说:“一点都没错。”根据上述条件,请判断以下哪项为真?
在美化演示文稿版面时,下列叙述不正确的是______。
在窗体上画一个名称为Command1的命令按钮和一个名称为Text1的文本框,并编写如下事件过程:PrivateSubCommand1_Click()DimiAsInteger,aAsInteger,jAsInteger
Forthispart,youareallowed30minutestowriteashortessayonthetopicBroadenOurKnowledge.Youshouldwriteatleast1
最新回复
(
0
)