首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A= (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵.
设n阶矩阵A= (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2021-10-08
39
问题
设n阶矩阵A=
(Ⅰ)求A的特征值和特征向量;
(Ⅱ)求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设,先由特征值多项式|A-λE|=0求A的特征值,即 [*] =[1-λ+(n-1)b](1-λ-b)
n-1
, 因此A的特征值为λ
1
=1+(n-1)b,λ
2
=λ
3
=…=λ
n
=1-b. 当b≠0时,对应于λ
1
=1+(n-1)b, [*] 不难求出ξ
1
=[*]是(A-λ
1
E)x=0的基础解系,从而属于λ
1
的特征向量为Cξ
n
= [*],其中C为任意非0常数。对应于λ
2
=λ
3
=…=λ
n
=1-b, A-(1-b)E=[*] 易得出基础解系为ξ
2
=[*] 从而特征向量为C
2
ξ
2
+C
3
ξ
3
+…+C
n
ξ
n
,其中C
2
,C
3
,…,C
n
是不全为0的常数. 当b=0时,A=[*]=E,从而A-E=0,任意非零向量皆为其特征向量. (Ⅱ)由前述已知,当b≠0,A有n个线性无关的特征向量,令P=(ξ
1
,ξ
2
,ξ
3
,…,ξ
n
), 则P
-1
AP=[*] 而当b=0时,A=E,任取P为可逆矩阵,都有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/EJy4777K
0
考研数学二
相关试题推荐
则积分域为()
若f(x)在x0点至少二阶可导,且=一1,则函数f(x)在x=x0处()
设则()
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则().
设f’x(x0,y),f’y(x0,y0)都存在,则().
若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β()
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
证明=anxn+an—1xn—1+…+a1x+a0。
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
随机试题
关于肺结核处于稳定期的描述下列哪项是不正确的
患者喘逆剐甚,张口抬肩,鼻翼煽张,呼吸困难,不能平卧,心悸,烦躁不安,面唇青紫,汗出肢冷,脉浮大无根。治宜
男,48岁,反酸、烧心5个月。胃镜检查:反流性食管炎伴溃疡形成。最佳的治疗药物是
乳腺癌好发于
主要用于预防Ⅰ型变态反应所致哮喘的药物是( )。
已知沿海某建设项目废气中SO2的等标排放量是3.0×109,则该项目大气的评价等级为()。
在影响消费者行为的因素中,属于个人因素的有()。
保证幼儿每天睡(),其中午睡一般应达到2小时左右。午睡时间可根据幼儿年龄、季节的变化和个体差异适当减少。
眼过千遍不如手过一遍,是贯彻()原则的体现。
市场失灵的主要表现有()。
最新回复
(
0
)