首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA一1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA一1α≠b。
admin
2019-08-12
79
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
证明矩阵Q可逆的充分必要条件是α
T
A
一1
α≠b。
选项
答案
由下三角形行列式及分块矩阵行列式的运算,有 [*] 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b一α
T
A
-1
α)。 由此可知,Q可逆的充分必要条件是b—|α
T
A
-1
α≠0,即α
T
A
-1
α≠b。
解析
转载请注明原文地址:https://kaotiyun.com/show/WeN4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2证明
求极限
求极限
曲线y=的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设实对称矩阵求可逆矩阵P,使P-1AP为对角矩阵,并计算行列式|A—E|的值.
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+0(χ3).
设线性方程组为问k1与k2各取何值时,方程组无解?有唯一解?有无穷多解?有无穷多解时,求其通解。
计算下列反常积分(广义积分)的值:
随机试题
怠速熄火如何处理?
Word文档若已经进行过保存操作,则不能再进行撤消操作。()
可用氢化可的松治疗的脑栓塞有
甲、乙双方签订一份水泥购销合同。乙没付货款。甲起诉要乙支付货款和违约金。乙应诉后提出,甲方与乙方签订的水泥购销合同无效,要求确认合同无效。本案所涉及的诉的种类有哪些?
频率的单位符号是()。
与投保人订立保险合同,并承担赔偿与给付保险金责任的人是( )。
证券公司经纪业务内部控制应重点防范规模失控、决策失误、超越授权、变相自营、账外自营、操纵市场、内幕交易等的风险。()
普通合伙企业的合伙人在合伙协议中未对该合伙企业的利润分配、亏损分担进行约定的,必须由合伙人平均分配、分担()。
我国每年生成的8亿多吨秸秆的综合利用率不高,绝大部分被废弃。某公司深入研究秸秆的材质特性,另辟蹊径,利用秸秆制造生态环保,结实耐用的板材。产品在国内外广受欢迎,取得巨大的经济效益,该公司之所以能够捕捉到他人通常视而不见的商机,是因为()
TVissooftenaparent’sgoodfriend,keepingkidshappilyoccupiedsothegrownupscancookdinner,answerthephone,ortake
最新回复
(
0
)