首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足 ∫0f(x)f-1(t)dt=∫0xtdt 其中f-1是f的反函数,求f(x).
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足 ∫0f(x)f-1(t)dt=∫0xtdt 其中f-1是f的反函数,求f(x).
admin
2019-05-10
84
问题
[2007年] 设f(x)是区间[0,π/4]上的单调可导函数,且满足
∫
0
f(x)
f
-1
(t)dt=∫
0
x
t
dt
其中f
-1
是f的反函数,求f(x).
选项
答案
在所给方程两边对x求导,利用f[f
-1
(x)]=x,得到关于.f′的方程,求解此微分方程即可求出f(x). 在所给等式两边对x求导,得到 f
-1
[f(x)]f′(x)=x[*], 即 xf′(x)=x[*]两边积分得到 f(x)=[*]=ln∣sinx+cosx∣+C, ① 其中x∈[0,π/4].在原式中令x=0,得到∫
0
f(0)
f
-1
(t)dt=∫
0
0
t[*]dt=0.因f(x)在区间[0,π/4]上单调、可导,则f
-1
(x)的值域为[0,π/4],单调非负,故f(0)=0,代入式①可得C=0,故f(x)=ln∣cosx+sinx∣—ln(cosx+sinx).
解析
转载请注明原文地址:https://kaotiyun.com/show/ENV4777K
0
考研数学二
相关试题推荐
=_______.
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
求不定积分
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+0(χ3).
求微分方程χy′+(1-χ)y=e2χ(χ>0)的满足y(χ)=1的特解.
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
微分方程y’+y=e-xxcosx满足条件y(0)=0的特解为__________。
若f(x)=是(一∞,+∞)上的连续函数,则a=_____________。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
随机试题
Thepolicewereaccusedoffailingto______thepeopleaboutthethreatoftheterrorists.
下列关于多发性骨髓瘤的描述,正确的是
收益是评价筛检效果的主要指标之一,以下哪种方法不能改善筛检试验的收益
A.赔偿责任B.罚款C.行政处分D.刑事责任E.有权制止擅自进入野生药材资源保护区从事教学、科研、旅游等活动的,当地县以上自然保护区主管部门()
下列有关执行死刑的说法,哪项是不正确的?
配有托纸辅助机器的平网印刷机器
金融市场主要交易工具有( )。
领兵复客制
You_______Markanything.Itwasnoneofhisbusiness.
WhichofthefollowingstatementsistrueabouttheKnowledge?
最新回复
(
0
)