首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上有二阶导数,且f′(χ)>0. (Ⅰ)证明至少存在一点ξ∈(a,b),使 ∫abf(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ); (Ⅱ)对(Ⅰ)中的ξ∈(a,b),求
设f(χ)在[a,b]上有二阶导数,且f′(χ)>0. (Ⅰ)证明至少存在一点ξ∈(a,b),使 ∫abf(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ); (Ⅱ)对(Ⅰ)中的ξ∈(a,b),求
admin
2022-10-09
41
问题
设f(χ)在[a,b]上有二阶导数,且f′(χ)>0.
(Ⅰ)证明至少存在一点ξ∈(a,b),使
∫
a
b
f(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ);
(Ⅱ)对(Ⅰ)中的ξ∈(a,b),求
选项
答案
(Ⅰ)令φ(χ)=f(b)(χ-a)+f(a)(b-χ)-∫
a
b
f(χ)dχ(a≤χ≤b), 即证φ(χ)在(a,b)[*]零点.因f(χ)在[a,b]连续且[*]f(a)<f(χ)<f(b)(χ∈(a,b))且f(a)(b-a)<∫
a
b
f(χ)dχ<f(b)(b-a) φ(a)=f(a)(b-a)-∫
a
b
f(χ)dχ<0, φ(b)=f(b)(b-a)-∫
a
b
f(χ)dχ>0, 故由闭区间上连续函数的性质知存在ξ∈(a,b),使得φ(ξ)=0,即 ∫
a
b
f(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ). (Ⅱ)先要得到[*]的表达式,为此先将上式改写成 ∫
a
b
f(χ)dχ=f(b)(ξ-a)+f(a)[(b-a)-(ξ-a)], 从而[*] 于是将b看作变量,对右端分式应用洛必达法则即得 [*] 分子、分母同除b-a得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ERf4777K
0
考研数学二
相关试题推荐
=_______
设α=[1,0,1]T,A=ααT,n是正数,则|aE一An|=____________.
设B=则Bn=________.
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是_________.
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y”+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
设f(x)在点x=0某一邻域内具有二阶连续导数,且绝对收敛.
设则
下列说法中正确的是().
设则I,J,K的大小关系为
随机试题
切断家兔双侧颈迷走神经后,呼吸运动的改变是
招投标过程中的答疑文件可以不予遵守。()
下列腧穴中,治疗急性吐泻有速效的是()
中气下陷,短气乏力,食少便溏,浮肿,小便不利者应首选的药物是
()是通过收集、评价候选人曾经做过的事情信息,从而预测其将来的行为的一种面谈方法。
RLC和GLC并联电路是最简单的二阶电路。()
"Whereistheuniversity(大学)?"ThisisaquestionthatmanyvisitorstoCambridge(剑桥)ask.Butnoonecangivethema【C1】______an
阅读下面短文,回答问题。现在,我们能见到的最早的灯具是在战国中晚期墓中出土的。在战国中晚期墓中出土的灯具,结构已经很完善了,制作也很精美。如出土的中山国古墓中银首人俑灯和十五连枝铜灯,已不是原始阶段的灯具了,可以说是中国灯具中的精品。在它们以前,
被誉为“短篇小说之王”的作家是()。
按下一个键后立即放开,产生IRQ1的个数是( )。
最新回复
(
0
)