首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
位于上半平面的凹曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与[*]的乘积成正比,求该曲线方程.
位于上半平面的凹曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与[*]的乘积成正比,求该曲线方程.
admin
2018-08-22
133
问题
位于上半平面的凹曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与[*]的乘积成正比,求该曲线方程.
选项
答案
由已知,有y(0)=1,y’(0)=0,y(2)=2,y’(2)=1. 又 [*] 即[*](因为y(x)是凹曲线,所以y">0). 令y’=p,y"=pp’,有[*] 即[*] 代入y(0)=1,y’(0)=0,y(2)=2,y’(2)=1,得k=2,C=0,有 [*] 代入y(0)=1,C
1
=0,即[*]所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/EWj4777K
0
考研数学二
相关试题推荐
设F(x,y)=在D=[a,b]×[c,d]上连续,求并证明:I≤2(M-m),其中M和m分别是f(x,y)在D上的最大值和最小值.
设f(x)为连续函数,a与m是常数且a>0,将二次积分I=∫0ady∫0yem(a-x)f(x)dx化为定积分,则I=_______.
[*]
证明:当x>0时,不等式<1+x成立.
设f(x)在闭区间[a,b]上具有连续的二阶导数,且f(a)=f(b)=0,当x∈(a,b)时,f(x)≠0.试证明:
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f(f(x))至少在两点处取得最小值.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明你的结论.
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×m中元素aij的代数余子式(i,j=1,2,…,n),二次型记x=(x1,x2,……xn)T,把f(x1,x2,……xn)写成矩阵形式,并证明二次型f(x)的矩阵为A一1;
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
利用代换将y"cosx-2y’sinx+3ycosx=ex化简,并求原方程的通解.
随机试题
下列各项中,属于经营租赁特点的有()
上消化道
具有抗吞噬作用的细菌特殊结构是
急性胰腺炎时,血清淀粉酶升高的规律是
A.人流术后3天下腹剧痛B.人流术后流血,经久不止C.人流术后月经紊乱D.人流术后闭经,周期性下腹痛E.人流术后继发不孕人工流产子宫复旧不全
下列有关商品房屋租赁登记备案提交的材料的说法,正确的是()。
刚度大,开挖深度大,可适用于所有地层的围护结构是()。
以下关于个人医疗贷款的说法中,正确的有()。
收入分配问题不在于国民能否接受收入差距,而在合理的收入分配秩序的缺失上。收入来源正当所形成的财富,国民早已能够接受,且充满尊重。但是,国民不能接受因垄断或钻政策空子或靠违法违规所带来的财富增长。因此,关键是采取措施,直面垄断和违法违规行为,为国民创造财富打
雨果作品较突出的思想和艺术特征有_______。
最新回复
(
0
)