首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2. 令A=(α1,α2,α3,α4),β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设α1,α2,α3,α4为4维列向量,满足α2,α3,α4线性无关,且α1+α3=2α2. 令A=(α1,α2,α3,α4),β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2017-10-25
69
问题
设α
1
,α
2
,α
3
,α
4
为4维列向量,满足α
2
,α
3
,α
4
线性无关,且α
1
+α
3
=2α
2
.
令A=(α
1
,α
2
,α
3
,α
4
),β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
设非零公共解为γ,则γ既可由α
1
和α
2
线性表示,也可由β
1
和β
2
线性表示. 设γ=x
1
α
1
+x
2
α
2
=-x
3
β
1
-x
4
β
2
,则x
1
α
1
+x
2
α
2
+x
3
β
1
+x
4
β
2
=0. (α
1
,α
2
,β
1
,β
2
)=[*] r≠0[*]x
1
,x
2
,x
3
,x
4
不全为零[*]R(α
1
,α
1
,β
1
,β
2
)<4[*]a=0. 当a=0时,[*] 解得[*]令x
t
=t,则x
1
=2t,x
2
=-t,x
3
=-t,x
4
=t. 所以非零公共解为2tα
1
-tα
2
=t(1,4,1,1)
T
,t为非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ekr4777K
0
考研数学一
相关试题推荐
设,且AX=0有非零解,则A*X=0的通解为__________.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X-E(X)|≥2)≤_________.
设A为n阶可逆矩阵(n≥2),则[(A*)*]-1=_________(用A*表示).
把二重积分写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
[*],其中C为任意常数
某商店经销某种商品,每周进货数量X与顾客对该种商品的需求量Y之间是相互独立的,且都服从[10,20]上的均匀分布.商店每出售一单位商品可获利1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利500元,计算此商店经销该种商品每周所
设某产品的指标服从正态分布,它的标准差为σ=100,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平α=0.05下,能否认为这批产品的指标的期望值μ不低于1600.
设则其以2π为周期的傅里叶级数在点x=π处收敛于_______.
设f(x)=nx(1-x)n(n为自然数),(Ⅰ)求f(x);(Ⅱ)求证:f(x)<.
随机试题
下列太平天国的诸活动中,能与当时世界历史潮流同步的是()。
非附着性龈下菌斑中,与牙周炎发病密切相关的细菌是
建筑企业对行政处罚结果及相应的行政复议结果和上诉后的一审判决不服,则()。
现场施工准备工作的质量控制中,不包括()。
儿童在学前时期应获得的基本阅读技能包括观察摹拟书面语言的能力、()以及自我调适的技能。
在南极海域冰冷的海水中,有一种独特的鱼类,它们的血液和体液中具有一种防冻蛋白,因为该蛋白它们才得以存活并演化至今。但时至今日,该种鱼类的生存却面临巨大挑战。有人认为这是海水升温导致的。以下哪项如果为真,最能支持上述观点?()
假设X1,X2,…,X16是来自正态总体N(μ,σ2)的简单随机样本,为其均值,S为其标准差,如果P{>μ+aS}=0.95,则参数a=_________.(t0.05(15)=1.7531)
Oldpeoplearealwayssayingthattheyoungarenotwhattheywere.Thesame【C1】______ismadefromgenerationtogenerationand
公钥证书是由可信机构签发的,用来
ManypeopleareworriedaboutwhattelevisionhasdonetothegenerationofAmericanchildrenwhohavegrownupwatchingit.For
最新回复
(
0
)