首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
admin
2015-06-29
41
问题
设A为n阶矩阵,α
1
,α
2
,α
3
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
2
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
得(A—E)α
1
=0; 由Aα
2
=α
1
+α
2
得(A—E)α
2
=α
1
;由Aα
3
=α
2
+α
3
得(A—E)α
3
=α
2
, 令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (1) (1)两边左乘A—E得 k
2
α
1
+k
3
α
2
=0, (2) (2)两边左乘A—E得k
3
α
1
=0,因为α
1
≠0,所以k
3
=0,代入(2)、(1)得k
1
=0,k
2
=0,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/EZ54777K
0
考研数学一
相关试题推荐
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆矩阵P,使P-1AP=A.
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求A的特征值并计算limAn.
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.求矩阵B,使得A[α1,α2,α3]=[α1,α2,α3]B;
证明:A~B,其中并求可逆矩阵P,使得P-1AP=B.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是r阶单位矩阵.
已知n阶方阵A满足矩阵方程A2-3A-2E=0.证明A可逆,并求出其逆矩阵A-1.
设A,B为n阶矩阵,E为n阶单位矩阵.利用(1)的结果证明
设A为4阶矩阵,满足等式(A-E)2=0,证明A可逆,并给出A-1.
随机试题
道德功能的发挥和实现所产生的社会影响及其实际效果被称为道德的
治疗呼吸衰竭时,为建立通畅的气道应采取以下措施,除了
健脾丸的作用是
若在迈克尔逊干涉仪的可动反射镜M移动0.620mm过程中,观察到干涉条纹移动了2300条,则所用光的波长为()mm。
资产负债表是综合反映企业特定日期资产、负债和所有者权益情况的动态报表,通过它可以了解企业资产构成、资金的来源构成和企业的偿债能力。()
根据行政法基本理论的要求,下列关于行政职权内容的表述中,正确的是()。
人们因为地理位置、兴趣爱好、工作、利益等因素而组成的群体是()。
物证检验可由( )进行。
已知P(A)=0.4,P(B)=0.25,P(A-B)=0.25,则P(A∪B)=()。[中山大学2011研]
Inthepastmostpilotshavebeenmen,buttodaythenumberofwomen______thisfieldisclimbing.
最新回复
(
0
)