首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
admin
2015-06-29
47
问题
设A为n阶矩阵,α
1
,α
2
,α
3
为n维列向量,其中α
1
≠0,且Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,证明:α
1
,α
2
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
得(A—E)α
1
=0; 由Aα
2
=α
1
+α
2
得(A—E)α
2
=α
1
;由Aα
3
=α
2
+α
3
得(A—E)α
3
=α
2
, 令 k
1
α
1
+k
2
α
2
+k
3
α
3
=0, (1) (1)两边左乘A—E得 k
2
α
1
+k
3
α
2
=0, (2) (2)两边左乘A—E得k
3
α
1
=0,因为α
1
≠0,所以k
3
=0,代入(2)、(1)得k
1
=0,k
2
=0,故α
1
,α
2
,α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/EZ54777K
0
考研数学一
相关试题推荐
设A为3阶矩阵,α1,α2,α3为线性无关的三维列向量,且满足Aα1=1/2α1+2/3α2+α3,Aα2=2/3α2+1/2α3,Aα3=-1/6α3.根据(1)中的矩阵B,证明A与B相似;
已知矩阵的特征方程有重根,问参数a取何值时,A能相似于对角矩阵,并说明理由.
证明:A~B,其中并求可逆矩阵P,使得P-1AP=B.
设A是n阶矩阵,满足A2=A,且r(A)=r(0<r≤n).证明:其中Er是r阶单位矩阵.
求的特征值、特征向量,判断A能否相似对角化,若能对角化,则求出可逆矩阵P,使得P-1AP为对角矩阵.
设矩阵有三个线性无关的特征向量,求满足条件的x,y.
已知n阶方阵A满足矩阵方程A2-3A-2E=0.证明A可逆,并求出其逆矩阵A-1.
随机试题
蛤蚧的主要性状特征是
刘大櫆有《__________》、《__________》。
TodaytheofficiallanguageoftheUnitedStatesandmostofCanadaisEnglish.However,Frenchalmostbecametheofficiallangu
"阴在内,阳之守也;阳在外,阴之使也",其说明的阴阳关系是
下列关于封闭式基金的说法中错误的是()。
优秀班主任首先应立足于增强()
试比较福禄培尔和蒙台梭利的教育思想。
人身自由是我国宪法规定的公民基本权利之一,其内容包括()(2012年一综一第52题)
在VisualFoxPro中,下面关于属性、事件、方法叙述错误的是( )。
RuthHandlerinventedsomethingin1959whichbecamesoquintessentiallyAmericanastobeincludedintheofficial"America’s
最新回复
(
0
)