首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有数量函数u(x,y,z)及向量函数F(x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)},其中P,Q,R,u在Ω上有连续的二阶偏导数,证明: (I)divgradu=(Ⅱ)div(rotF)=0;(Ⅲ)rot(gradu)=θ.
设有数量函数u(x,y,z)及向量函数F(x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)},其中P,Q,R,u在Ω上有连续的二阶偏导数,证明: (I)divgradu=(Ⅱ)div(rotF)=0;(Ⅲ)rot(gradu)=θ.
admin
2017-07-28
108
问题
设有数量函数u(x,y,z)及向量函数F(x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)},其中P,Q,R,u在Ω上有连续的二阶偏导数,证明:
(I)divgradu=
(Ⅱ)div(rotF)=0;(Ⅲ)rot(gradu)=θ.
选项
答案
由梯度,散度及旋度的计算公式得到: [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/7Ou4777K
0
考研数学一
相关试题推荐
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设Γ:x=x(t),y=y(t)(a<t<β)是区域D内的光滑曲线,即x(t),y(t),(a,β)有连续的导数且x2(t)+y2(t)≠0,f(x,y)在D内有连续的偏导数,若P0∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点P0沿Γ的切线方向
=_________,其中Ω为曲线绕z轴旋围一周而成曲面与平面z=2,z=8所围立体.
设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面点M处的切平面被三个坐标面所截得的三角形上侧,求(ξ,η,ζ),使曲面积分为最小,并求此最小值.
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k,的值
求方程karctanx—x=0不同实根的个数,其中k为参数.
求下列曲面的面积:(Ⅰ)半球面z=及旋转抛物面2az=x2+y2所围立体的表面S;(Ⅱ)锥面z=被柱面z2=2x所割下部分的曲面S.
随机试题
Wearefortunate______severaldescriptivepapershavebeenpublishedwhichgiveadequatebackgroundandexperimentalresults.
龋病的定义是
A.柴胡B.木贼C.葛根D.白芷E.升麻性微寒,善解表退热,又能疏肝升阳的是()。
历代本草著作中记载藏药最多的是()。
以下关于词的表述,恰当的有()。
通读并纠正校样中的错误。神奇的生物催化剂——酶生物体内每时每刻都在进行着各式各样的生物化学反应。比如,食物中的淀粉变成葡萄糖,多余的萄葡糖又转化成糖原和脂
纸上故乡邓琴故乡给了我一颗多愁善感的心,它常常在梦中打探故乡的消息。我的家乡在千里之外的赣南,它的每一寸肌肤都浸润在红色文化里,在淡淡茶香中,在田间
根据以下资料。回答116-120题。注:客货运输包括铁路、民航、公路、水运2008年一季度,铁路货运量是:
如实地将混合所有制经济中的国有成分和集体成分,纳入公有制经济的范围内,有助于
下列关于计算机的叙述中,不正确的一条是
最新回复
(
0
)